切换至 "中华医学电子期刊资源库"

中华心脏与心律电子杂志 ›› 2023, Vol. 11 ›› Issue (01) : 1 -4. doi: 10.3877/cma.j.issn.2095-6568.2023.01.001

述评

人工智能在心脏疾病诊疗与研究领域的进展与展望
周珊珊1, 陈韵岱1,()   
  1. 1. 100048 北京,中国人民解放军总医院第六医学中心心血管病医学部
  • 收稿日期:2023-03-20 出版日期:2023-03-25
  • 通信作者: 陈韵岱

Progress and future prospect of artificial intelligence in the field of diagnosis, treatment and research of heart diseases

Shanshan Zhou1, Yundai Chen1,()   

  1. 1. Department of Cardiology, The Sixth Medical Centre, Chinese PLA General Hospital,Beijing 100853, China
  • Received:2023-03-20 Published:2023-03-25
  • Corresponding author: Yundai Chen
引用本文:

周珊珊, 陈韵岱. 人工智能在心脏疾病诊疗与研究领域的进展与展望[J]. 中华心脏与心律电子杂志, 2023, 11(01): 1-4.

Shanshan Zhou, Yundai Chen. Progress and future prospect of artificial intelligence in the field of diagnosis, treatment and research of heart diseases[J]. Chinese Journal of Heart and Heart Rhythm(Electronic Edition), 2023, 11(01): 1-4.

人工智能(AI)在心脏病诊疗与研究领域的应用正处于快速发展阶段。从心电图诊断到心脏影像诊断,从风险预测到临床决策支持,AI都已经取得了显著进展。未来,随着数据整合与共享、个性化诊疗、多学科交叉等趋势的发展,AI技术可以协助心脏疾病的诊疗与研究技术与其他学科进行交叉互融,实现多学科之间的深度融合和协同创新,将进一步推动心脏病诊疗的革命性变革。但AI的局限性和不足之处也应该引起我们足够的重视。

[1]
Mincholé A, Rodriguez B. Artificial intelligence for the electrocardiogram[J]. Nat Med, 2019, 25(1):22-23.
[2]
Attia ZI, Kapa S, Lopez-Jimenez F, et al. Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram[J]. Nat Med, 2019, 25(1):70-74.
[3]
Halcox J, Wareham K, Cardew A, et al. Assessment of remote heart rhythm sampling using the aliveCor heart monitor to screen for atrial fibrillation: The REHEARSE-AF Study[J]. Circulation, 2017, 136(19):1784-1794.
[4]
Goldenthal IL, Sciacca RR, Riga T, et al. Recurrent atrial fibrillation/flutter detection after ablation or cardioversion using the AliveCor KardiaMobile device: iHEART results[J]. J Cardiovasc Electrophysiol, 2019, 30(11):2220-2228.
[5]
Perez MV, Mahaffey KW, Hedlin H, et al. Large-scale assessment of a smartwatch to identify atrial fibrillation[J]. N Engl J Med, 2019, 381(20):1909-1917.
[6]
Tison GH, Sanchez JM, Ballinger B, et al. Passive detection of atrial fibrillation using a commercially available smartwatch[J]. JAMA Cardiol, 2018, 3(5):409-416.
[7]
Guo Y, Lane DA, Wang L, et al. Mobile health technology to improve care for patients with atrial fibrillation[J]. J Am Coll Cardiol, 2020,75(13):1523-1534.
[8]
党梦秋, 范嘉祺, 戴晗怡, 等. 智能手表对主动脉瓣置换术后患者心房颤动及左束支传导阻滞的诊断价值[J/OL]. 中华心脏与心律电子杂志, 2023, 11(1): 24-27.
[9]
Oikonomou EK, Marwan M, Desai MY, et al. Non-invasive detection of coronary inflammation using computed tomography and prediction of residual cardiovascular risk (the CRISP CT study): a post-hoc analysis of prospective outcome data[J]. Lancet, 2018, 392(10151):929-939.
[10]
Arsanjani R, Xu Y, Dey D, et al. Improved accuracy of myocardial perfusion SPECT for detection of coronary artery disease by machine learning in a large population[J]. J Nucl Cardiol, 2013, 20(4):553-562.
[11]
Betancur J, Commandeur F, Motlagh M, et al. Deep learning for prediction of obstructive disease from fast myocardial perfusion SPECT: a multicenter study[J]. JACC Cardiovasc Imaging, 2018, 11(11):1654-1663.
[12]
Hu LH, Betancur J, Sharir T, et al. Machine learning predicts per-vessel early coronary revascularization after fast myocardial perfusion SPECT: results from multicentre REFINE SPECT registry[J]. Eur Heart J Cardiovasc Imaging, 2020, 21(5):549-559.
[13]
Al'Aref SJ, Anchouche K, Singh G, et al. Clinical applications of machine learning in cardiovascular disease and its relevance to cardiac imaging[J]. Eur Heart J, 2019, 40(24):1975-1986.
[14]
Dey D, Gaur S, Ovrehus KA, et al. Integrated prediction of lesion-specific ischaemia from quantitative coronary CT angiography using machine learning: a multicentre study[J]. Eur Radiol, 2018, 28(6):2655-2664.
[15]
Henglin M, Stein G, Hushcha PV, et al. Machine learning approaches in cardiovascular imaging[J]. Circ Cardiovasc Imaging, 2017,10(10):e005614.
[16]
Krittanawong C, Virk H, Bangalore S, et al. Machine learning prediction in cardiovascular diseases: a meta-analysis[J]. Sci Rep, 2020, 10(1):16057.
[17]
Al'Aref SJ, Maliakal G, Singh G, et al. Machine learning of clinical variables and coronary artery calcium scoring for the prediction of obstructive coronary artery disease on coronary computed tomography angiography: analysis from the CONFIRM registry[J]. Eur Heart J, 2020, 41(3):359-367.
[18]
沈安娜, 李建新, 刘芳超, 等. 静息心率对10年心血管疾病风险的影响[J/OL]. 中华心脏与心律电子杂志, 2023, 11(1): 5-11.
[19]
Bai W, Sinclair M, Tarroni G, et al. Automated cardiovascular magnetic resonance image analysis with fully convolutional networks[J]. J Cardiovasc Magn Reson, 2018, 20(1):65.
[20]
Bhuva AN, Bai W, Lau C, et al. A multicenter, scan-rescan, human and machine learning CMR study to test generalizability and precision in imaging biomarker analysis[J]. Circ Cardiovasc Imaging, 2019, 12(10):e009214.
[21]
Benjamens S, Dhunnoo P, Meskó B. The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database[J]. NPJ Digit Med, 2020, 3:118.
[22]
Chiarito M, Luceri L, Oliva A, et al. Artificial Intelligence and Cardiovascular Risk Prediction: All That Glitters is not Gold[J]. Eur Cardiol, 2022, 17:e29.
[1] 张梅芳, 谭莹, 朱巧珍, 温昕, 袁鹰, 秦越, 郭洪波, 侯伶秀, 黄文兰, 彭桂艳, 李胜利. 早孕期胎儿头臀长正中矢状切面超声图像的人工智能质控研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 945-950.
[2] 杨菲菲, 林锡祥, 陈亦新, 王秋霜, 张丽伟, 陈煦, 张梅青, 王淑华, 何昆仑. 基于深度学习的超声心动图自动识别节段性室壁运动异常的研究[J]. 中华医学超声杂志(电子版), 2023, 20(04): 424-429.
[3] 唐玮, 何融泉, 黄素宁. 深度学习在乳腺癌影像诊疗和预后预测中的应用[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 323-328.
[4] 范帅华, 郭伟, 郭军. 基于机器学习的决策树算法在血流感染预后预测中应用现状及展望[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 289-293.
[5] 张辉, 蔡敏, 黄湘雅. 数字化技术和人工智能在上颌窦底提升术的临床应用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(04): 244-252.
[6] 李晓阳, 刘柏隆, 周祥福. 大数据及人工智能对女性盆底功能障碍性疾病的诊断及风险预测[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 549-552.
[7] 胡博文, 戴英波. 泌尿外科机器人手术新趋势[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 418-421.
[8] 李腾成, 狄金明. 2023 V1版前列腺癌NCCN指南更新要点解读[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 313-318.
[9] 邢晓伟, 刘雨辰, 赵冰, 王明刚. 基于术前腹部CT的卷积神经网络对腹壁切口疝术后复发预测价值[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 677-681.
[10] 邢晓伟, 刘雨辰, 王明刚. 人工智能技术在疝和腹壁外科领域的应用及展望[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(04): 390-393.
[11] 韩冰, 顾劲扬. 深度学习神经网络在肝癌诊疗中的研究及应用前景[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 480-485.
[12] 雷漫诗, 邓锶锶, 汪昕蓉, 黄锦彬, 向青, 熊安妮, 孟占鳌. 人工智能辅助压缩感知技术在上腹部T2WI压脂序列中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 551-556.
[13] 葛云鹏, 崔红元, 宋京海. 人工智能在原发性肝癌诊断、治疗及预后中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 367-371.
[14] 王晓东, 汪恺, 葛昭, 丁忠祥, 徐骁. 计算机视觉技术在肝癌肝移植疗效提升中的研究进展[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 361-366.
[15] 胡平, 鄢腾峰, 周海柱, 祝新根. 人工智能在非增强CT图像中颅内出血早期检出和血肿分割的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 410-416.
阅读次数
全文


摘要