[1] |
Mincholé A, Rodriguez B. Artificial intelligence for the electrocardiogram[J]. Nat Med, 2019, 25(1):22-23.
|
[2] |
Attia ZI, Kapa S, Lopez-Jimenez F, et al. Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram[J]. Nat Med, 2019, 25(1):70-74.
|
[3] |
Halcox J, Wareham K, Cardew A, et al. Assessment of remote heart rhythm sampling using the aliveCor heart monitor to screen for atrial fibrillation: The REHEARSE-AF Study[J]. Circulation, 2017, 136(19):1784-1794.
|
[4] |
Goldenthal IL, Sciacca RR, Riga T, et al. Recurrent atrial fibrillation/flutter detection after ablation or cardioversion using the AliveCor KardiaMobile device: iHEART results[J]. J Cardiovasc Electrophysiol, 2019, 30(11):2220-2228.
|
[5] |
Perez MV, Mahaffey KW, Hedlin H, et al. Large-scale assessment of a smartwatch to identify atrial fibrillation[J]. N Engl J Med, 2019, 381(20):1909-1917.
|
[6] |
Tison GH, Sanchez JM, Ballinger B, et al. Passive detection of atrial fibrillation using a commercially available smartwatch[J]. JAMA Cardiol, 2018, 3(5):409-416.
|
[7] |
Guo Y, Lane DA, Wang L, et al. Mobile health technology to improve care for patients with atrial fibrillation[J]. J Am Coll Cardiol, 2020,75(13):1523-1534.
|
[8] |
党梦秋, 范嘉祺, 戴晗怡, 等. 智能手表对主动脉瓣置换术后患者心房颤动及左束支传导阻滞的诊断价值[J/OL]. 中华心脏与心律电子杂志, 2023, 11(1): 24-27.
|
[9] |
Oikonomou EK, Marwan M, Desai MY, et al. Non-invasive detection of coronary inflammation using computed tomography and prediction of residual cardiovascular risk (the CRISP CT study): a post-hoc analysis of prospective outcome data[J]. Lancet, 2018, 392(10151):929-939.
|
[10] |
Arsanjani R, Xu Y, Dey D, et al. Improved accuracy of myocardial perfusion SPECT for detection of coronary artery disease by machine learning in a large population[J]. J Nucl Cardiol, 2013, 20(4):553-562.
|
[11] |
Betancur J, Commandeur F, Motlagh M, et al. Deep learning for prediction of obstructive disease from fast myocardial perfusion SPECT: a multicenter study[J]. JACC Cardiovasc Imaging, 2018, 11(11):1654-1663.
|
[12] |
Hu LH, Betancur J, Sharir T, et al. Machine learning predicts per-vessel early coronary revascularization after fast myocardial perfusion SPECT: results from multicentre REFINE SPECT registry[J]. Eur Heart J Cardiovasc Imaging, 2020, 21(5):549-559.
|
[13] |
Al'Aref SJ, Anchouche K, Singh G, et al. Clinical applications of machine learning in cardiovascular disease and its relevance to cardiac imaging[J]. Eur Heart J, 2019, 40(24):1975-1986.
|
[14] |
Dey D, Gaur S, Ovrehus KA, et al. Integrated prediction of lesion-specific ischaemia from quantitative coronary CT angiography using machine learning: a multicentre study[J]. Eur Radiol, 2018, 28(6):2655-2664.
|
[15] |
Henglin M, Stein G, Hushcha PV, et al. Machine learning approaches in cardiovascular imaging[J]. Circ Cardiovasc Imaging, 2017,10(10):e005614.
|
[16] |
Krittanawong C, Virk H, Bangalore S, et al. Machine learning prediction in cardiovascular diseases: a meta-analysis[J]. Sci Rep, 2020, 10(1):16057.
|
[17] |
Al'Aref SJ, Maliakal G, Singh G, et al. Machine learning of clinical variables and coronary artery calcium scoring for the prediction of obstructive coronary artery disease on coronary computed tomography angiography: analysis from the CONFIRM registry[J]. Eur Heart J, 2020, 41(3):359-367.
|
[18] |
沈安娜, 李建新, 刘芳超, 等. 静息心率对10年心血管疾病风险的影响[J/OL]. 中华心脏与心律电子杂志, 2023, 11(1): 5-11.
|
[19] |
Bai W, Sinclair M, Tarroni G, et al. Automated cardiovascular magnetic resonance image analysis with fully convolutional networks[J]. J Cardiovasc Magn Reson, 2018, 20(1):65.
|
[20] |
Bhuva AN, Bai W, Lau C, et al. A multicenter, scan-rescan, human and machine learning CMR study to test generalizability and precision in imaging biomarker analysis[J]. Circ Cardiovasc Imaging, 2019, 12(10):e009214.
|
[21] |
Benjamens S, Dhunnoo P, Meskó B. The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database[J]. NPJ Digit Med, 2020, 3:118.
|
[22] |
Chiarito M, Luceri L, Oliva A, et al. Artificial Intelligence and Cardiovascular Risk Prediction: All That Glitters is not Gold[J]. Eur Cardiol, 2022, 17:e29.
|