切换至 "中华医学电子期刊资源库"

中华心脏与心律电子杂志 ›› 2023, Vol. 11 ›› Issue (01) : 28 -31. doi: 10.3877/cma.j.issn.2095-6568.2023.01.006

人工智能 大数据

人工智能辅助心电图的临床应用
王昱1, 谢中立1, 王霞飞2, 魏倩囡1, 郑雪梅3, 牛晨光1,()   
  1. 1. 475000 开封,河南大学第一附属医院临床资源转化实验室
    2. 475000 开封,河南大学第一附属医院病理科
    3. 475000 开封,河南大学第一附属医院心内科
  • 收稿日期:2022-07-08 出版日期:2023-03-25
  • 通信作者: 牛晨光
  • 基金资助:
    国家自然科学基金(81800395); 河南省医学科技攻关省部共建(SBGJ2018061); 河南大学研究生英才计划(SYLYC2022152)

Clinical application of artificial intelligence assisted electrocardiogram

Yu Wang1, Zhongli Xie1, Xiafei Wang2, Qiannan Wei1, Xuemei Zheng3, Chenguang Niu1,()   

  1. 1. The Key Laboratory of Clinical Resources Translation,The First Affiliated Hospital of Henan University, Kaifeng 475000, China
    2. Department of Pathology,The First Affiliated Hospital of Henan University, Kaifeng 475000, China
    3. Department of Cardiology,The First Affiliated Hospital of Henan University, Kaifeng 475000, China
  • Received:2022-07-08 Published:2023-03-25
  • Corresponding author: Chenguang Niu
引用本文:

王昱, 谢中立, 王霞飞, 魏倩囡, 郑雪梅, 牛晨光. 人工智能辅助心电图的临床应用[J/OL]. 中华心脏与心律电子杂志, 2023, 11(01): 28-31.

Yu Wang, Zhongli Xie, Xiafei Wang, Qiannan Wei, Xuemei Zheng, Chenguang Niu. Clinical application of artificial intelligence assisted electrocardiogram[J/OL]. Chinese Journal of Heart and Heart Rhythm(Electronic Edition), 2023, 11(01): 28-31.

基于人工智能的心电图诊断(AI-ECG),能够辅助医生提供快速而准确的检查结果,并可以诊断出心电图常规疾病诊断谱之外的许多心血管疾病和非心血管疾病。AI-ECG已在疾病筛查、临床诊断、转归预测等方面表现出强大应用前景,有望在临床上实现大规模应用,并在非临床场景发挥独特作用。

[1]
王晓刚, 王晓亮, 董静. 眼科人工智能应用研究进展[J]. 中华眼外伤职业眼病杂志, 2020, 42(11):876-880.
[2]
Liu Y, Jain A, Eng C, et al. A deep learning system for differential diagnosis of skin diseases[J]. Nat Med, 2020, 26(6):900-908.
[3]
McKinney SM, Sieniek M, Godbole V, et al. International evaluation of an AI system for breast cancer screening[J]. Nature, 2020, 577(7788):89-94.
[4]
刘蓬然, 薛明迪, 霍彤彤, 等. 人工智能技术在抗击新型冠状病毒肺炎疫情中的应用进展[J]. 中华全科医师杂志, 2022, 21(6):567-572.
[5]
Hannun AY, Rajpurkar P, Haghpanahi M, et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network[J]. Nat Med, 2019, 25(1):65-69.
[6]
Chang KC, Hsieh PH, Wu MY, et al. Usefulness of multi-labelling artificial intelligence in detecting rhythm disorders and acute ST-elevation myocardial infarction on 12-lead electrocardiogram[J].Ehj Dh,2021, 2(2): 299-310.
[7]
Zhang H, Liu C, Zhang Z, et al. Recurrence plot-based approach for cardiac arrhythmia classification using inception-resNet-v2 [J]. Front Physiol, 2021, 12: 648950.
[8]
Attia ZI, Noseworthy PA, Lopez-Jimenez F, et al. An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction[J]. Lancet, 2019, 394(10201):861-867.
[9]
Raghunath S, Pfeifer JM, Ulloa-Cerna AE, et al. Deep neural networks can predict new-onset atrial fibrillation from the 12-lead ECG and help identify those at risk of atrial fibrillation-related stroke[J]. Circulation, 2021, 143(13): 1287-1298.
[10]
Khurshid S, Friedman S, Reeder C, et al. ECG-based deep learning and clinical risk factors to predict atrial fibrillation[J]. Circulation, 2022, 145(2): 122-133.
[11]
Acharya UR, Fujita H, Sudarshan VK, et al. Automated detection and localization of myocardial infarction using electrocardiogram: a comparative study of different leads[J]. Knowl-based syst, 2016, 99:146-156.
[12]
Kumar M, Pachori R, Acharya U. Automated diagnosis of myocardial infarction ECG signals using sample entropy in flexible analytic wavelet transform framework[J]. Entropy, 2017, 19(9):488.
[13]
Al-Zaiti S, Besomi L, Bouzid Z, et al. Machine learning-based prediction of acute coronary syndrome using only the pre-hospital 12-lead electrocardiogram[J]. Nat Commun, 2020, 11(1): 3966.
[14]
Attia ZI, Kapa S, Lopez-Jimenez F, et al. Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram[J]. Nat Med, 2019, 25(1):70-74.
[15]
Attia ZI, Kapa S, Yao X, et al. Prospective validation of a deep learning electrocardiogram algorithm for the detection of left ventricular systolic dysfunction[J]. J Cardiovasc Electrophysiol, 2019, 30(5): 668-674.
[16]
Yao X, Rushlow DR, Inselman JW, et al. Artificial intelligence-enabled electrocardiograms for identification of patients with low ejection fraction: a pragmatic, randomized clinical trial[J]. Nat Med, 2021, 27(5):815-819.
[17]
窦铮,范龙英,张晓霞. 肥厚型心肌病的最新研究进展[J].心肺血管病杂志.2021,40(3):291-293.
[18]
Ko WY, Siontis KC, Attia ZI, et al. Detection of hypertrophic cardiomyopathy using a convolutional neural network-enabled electrocardiogram[J]. J Am Coll Cardiol, 2020, 75(7):722-733.
[19]
Siontis KC, Liu K, Bos JM, et al. Detection of hypertrophic cardiomyopathy by an artificial intelligence electrocardiogram in children and adolescents[J]. Int J Cardiol, 2021, 340:42-47.
[20]
Goto S, Ichihara G, Ikura H, et al. A combined, fully automated electrocardiogram and echocardiogram strategy for detection of hypertrophic cardiomyopathy[J]. Circulation, 2021, 144(Suppl_1): A11222-A11222.
[21]
Kwon JM, Lee SY, Jeon KH, et al. Deep learning-based algorithm for detecting aortic stenosis using electrocardiography[J]. J Am Heart Assoc, 2020, 9(7):e014717.
[22]
Cohen-Shelly M, Attia ZI, Friedman PA, et al. Electrocardiogram screening for aortic valve stenosis using artificial intelligence[J]. Eur Heart J, 2021, 42(30):2885-2896.
[23]
Kwon JM, Kim KH, Akkus Z, et al. Artificial intelligence for detecting mitral regurgitation using electrocardiography[J]. J Electrocardiol, 2020, 59:151-157.
[24]
朱彩华, 张伊楚, 王晨曦, 等. 基于人工智能识别心电图的一种低钾血症快速辅助诊断模型[J]. 中国心脏起搏与心电生理杂志, 2021, 35(1):44-48.
[25]
Rudd KE, Johnson SC, Agesa KM, et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study[J]. Lancet, 2020, 395(10219):200-211.
[26]
Kwon JM, Lee YR, Jung MS, et al. Deep-learning model for screening sepsis using electrocardiography[J]. Scand J Trauma Resusc Emerg Med, 2021, 29(1):145.
[27]
Sadasivuni S, Bhanushali SP, Singamsetti SS, et al. Multi-task learning mixed-signal classifier for in-situ detection of atrial fibrillation and sepsis[C]//2021 IEEE Biomedical Circuits and Systems Conference (BioCAS). IEEE, 2021: 1-4.
[28]
Byun S, Kim AY, Jang EH, et al. Detection of major depressive disorder from linear and nonlinear heart rate variability features during mental task protocol[J]. Comput Biol Med, 2019, 112:103381.
[29]
Kuang D, Yang R, Chen X, et al. Depression recognition according to heart rate variability using Bayesian Networks[J]. J Psychiatr Res, 2017, 95:282-287.
[30]
Zang X, Li B, Zhao L, et al. End-to-end depression recognition based on a one-dimensional convolution neural network model using two-lead ECG signal[J]. J Med Biol Eng, 2022, 42(2):225-233.
[31]
Ozdemir MA, Ozdemir GD, Guren O. Classification of COVID-19 electrocardiograms by using hexaxial feature mapping and deep learning[J]. BMC Med Inform Decis Mak, 2021, 21(1):170.
[32]
Ahn JC, Attia ZI, Rattan P, et al. Development of the AI-cirrhosis-ECG score: an electrocardiogram-based deep learning model in cirrhosis[J]. Am J Gastroenterol, 2022, 117(3):424-432.
[33]
Porumb M, Stranges S, Pescapè A, et al. Precision medicine and artificial intelligence: a pilot study on deep learning for hypoglycemic events detection based on ECG[J]. Sci Rep, 2020, 10(1):170.
[34]
Benjamens S, Dhunnoo P, Meskó B. The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database[J]. NPJ Digit Med, 2020, 3:118.
[35]
Tison GH, Siontis KC, Abreau S, et al. Assessment of disease status and treatment response with artificial intelligence-enhanced electrocardiography in obstructive hypertrophic cardiomyopathy[J]. J Am Coll Cardiol, 2022, 79(10):1032-1034.
[36]
Lin Chin. Artificial intelligence-enable ECG system for future cardiovasculaor risk stratification[EB/OL]. (2021-12-11) [2022-5-6].

URL    
[37]
Isakadze N, Martin SS. How useful is the smartwatch ECG?[J]. Trends Cardiovasc Med, 2020, 30(7):442-448.
[38]
Badertscher P, Lischer M, Mannhart D, et al. Clinical validation of a novel smartwatch for automated detection of atrial fibrillation[J]. Heart Rhythm O2, 2022, 3(2):208-210.
[39]
Chorba JS, Shapiro AM, Le L, et al. Deep learning algorithm for automated cardiac murmur detection via a digital stethoscope platform[J]. J Am Heart Assoc, 2021, 10(9):e019905.
[1] 郝玥萦, 毛盈譞, 张羽, 汪佳旭, 韩林霖, 匡雯雯, 孟瑶, 杨秀华. 超声引导衰减参数成像评估肝脂肪变性及其对心血管疾病风险的预测价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(08): 770-777.
[2] 曹雯佳, 刘学兵, 罗安果, 钟释敏, 邓岚, 王玉琳, 李赵欢. 超声矢量血流成像对2型糖尿病患者颈动脉壁剪切应力的研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(07): 709-717.
[3] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[4] 王岚, 徐斌胜, 谢乐. 肥厚型心肌病的经胸超声心动图诊断与心电图表现特征[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 593-596.
[5] 明昊, 肖迎聪, 巨艳, 宋宏萍. 乳腺癌风险预测模型的研究现状[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 287-291.
[6] 陈晓玲, 钟永洌, 刘巧梨, 李娜, 张志奇, 廖威明, 黄桂武. 超高龄髋膝关节术后谵妄及心血管并发症风险预测[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 575-584.
[7] 叶莉, 杜宇. 深度学习在牙髓根尖周病临床诊疗中的应用[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(06): 351-356.
[8] 熊鹰, 林敬莱, 白奇, 郭剑明, 王烁. 肾癌自动化病理诊断:AI离临床还有多远?[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 535-540.
[9] 李伟, 宋子健, 赖衍成, 周睿, 吴涵, 邓龙昕, 陈锐. 人工智能应用于前列腺癌患者预后预测的研究现状及展望[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 541-546.
[10] 黄俊龙, 李文双, 李晓阳, 刘柏隆, 陈逸龙, 丘惠平, 周祥福. 基于盆底彩超的人工智能模型在女性压力性尿失禁分度诊断中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 597-605.
[11] 莫淇舟, 苏劲, 黄健, 李健维, 李思宁, 柳建军. 智能控压输尿管软镜碎石吸引取石术在直径10~25 mm上尿路结石中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 497-502.
[12] 李义亮, 苏拉依曼·牙库甫, 麦麦提艾力·麦麦提明, 克力木·阿不都热依木. 机器人与腹腔镜食管裂孔疝修补术联合Nissen 胃底折叠术短期疗效分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(05): 512-517.
[13] 宋新雅, 苏小慧, 卞士柱, 丁小涵. 吸入性药物治疗肺动脉高压的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 831-835.
[14] 冯熔熔, 苏晓乐, 王利华. 慢性肾脏病患者并发心血管疾病相关生物标志物研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 273-278.
[15] 孙铭远, 褚恒, 徐海滨, 张哲. 人工智能应用于多发性肺结节诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 785-790.
阅读次数
全文


摘要