[1] |
王晓刚, 王晓亮, 董静. 眼科人工智能应用研究进展[J]. 中华眼外伤职业眼病杂志, 2020, 42(11):876-880.
|
[2] |
Liu Y, Jain A, Eng C, et al. A deep learning system for differential diagnosis of skin diseases[J]. Nat Med, 2020, 26(6):900-908.
|
[3] |
McKinney SM, Sieniek M, Godbole V, et al. International evaluation of an AI system for breast cancer screening[J]. Nature, 2020, 577(7788):89-94.
|
[4] |
刘蓬然, 薛明迪, 霍彤彤, 等. 人工智能技术在抗击新型冠状病毒肺炎疫情中的应用进展[J]. 中华全科医师杂志, 2022, 21(6):567-572.
|
[5] |
Hannun AY, Rajpurkar P, Haghpanahi M, et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network[J]. Nat Med, 2019, 25(1):65-69.
|
[6] |
Chang KC, Hsieh PH, Wu MY, et al. Usefulness of multi-labelling artificial intelligence in detecting rhythm disorders and acute ST-elevation myocardial infarction on 12-lead electrocardiogram[J].Ehj Dh,2021, 2(2): 299-310.
|
[7] |
Zhang H, Liu C, Zhang Z, et al. Recurrence plot-based approach for cardiac arrhythmia classification using inception-resNet-v2 [J]. Front Physiol, 2021, 12: 648950.
|
[8] |
Attia ZI, Noseworthy PA, Lopez-Jimenez F, et al. An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction[J]. Lancet, 2019, 394(10201):861-867.
|
[9] |
Raghunath S, Pfeifer JM, Ulloa-Cerna AE, et al. Deep neural networks can predict new-onset atrial fibrillation from the 12-lead ECG and help identify those at risk of atrial fibrillation-related stroke[J]. Circulation, 2021, 143(13): 1287-1298.
|
[10] |
Khurshid S, Friedman S, Reeder C, et al. ECG-based deep learning and clinical risk factors to predict atrial fibrillation[J]. Circulation, 2022, 145(2): 122-133.
|
[11] |
Acharya UR, Fujita H, Sudarshan VK, et al. Automated detection and localization of myocardial infarction using electrocardiogram: a comparative study of different leads[J]. Knowl-based syst, 2016, 99:146-156.
|
[12] |
Kumar M, Pachori R, Acharya U. Automated diagnosis of myocardial infarction ECG signals using sample entropy in flexible analytic wavelet transform framework[J]. Entropy, 2017, 19(9):488.
|
[13] |
Al-Zaiti S, Besomi L, Bouzid Z, et al. Machine learning-based prediction of acute coronary syndrome using only the pre-hospital 12-lead electrocardiogram[J]. Nat Commun, 2020, 11(1): 3966.
|
[14] |
Attia ZI, Kapa S, Lopez-Jimenez F, et al. Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram[J]. Nat Med, 2019, 25(1):70-74.
|
[15] |
Attia ZI, Kapa S, Yao X, et al. Prospective validation of a deep learning electrocardiogram algorithm for the detection of left ventricular systolic dysfunction[J]. J Cardiovasc Electrophysiol, 2019, 30(5): 668-674.
|
[16] |
Yao X, Rushlow DR, Inselman JW, et al. Artificial intelligence-enabled electrocardiograms for identification of patients with low ejection fraction: a pragmatic, randomized clinical trial[J]. Nat Med, 2021, 27(5):815-819.
|
[17] |
窦铮,范龙英,张晓霞. 肥厚型心肌病的最新研究进展[J].心肺血管病杂志.2021,40(3):291-293.
|
[18] |
Ko WY, Siontis KC, Attia ZI, et al. Detection of hypertrophic cardiomyopathy using a convolutional neural network-enabled electrocardiogram[J]. J Am Coll Cardiol, 2020, 75(7):722-733.
|
[19] |
Siontis KC, Liu K, Bos JM, et al. Detection of hypertrophic cardiomyopathy by an artificial intelligence electrocardiogram in children and adolescents[J]. Int J Cardiol, 2021, 340:42-47.
|
[20] |
Goto S, Ichihara G, Ikura H, et al. A combined, fully automated electrocardiogram and echocardiogram strategy for detection of hypertrophic cardiomyopathy[J]. Circulation, 2021, 144(Suppl_1): A11222-A11222.
|
[21] |
Kwon JM, Lee SY, Jeon KH, et al. Deep learning-based algorithm for detecting aortic stenosis using electrocardiography[J]. J Am Heart Assoc, 2020, 9(7):e014717.
|
[22] |
Cohen-Shelly M, Attia ZI, Friedman PA, et al. Electrocardiogram screening for aortic valve stenosis using artificial intelligence[J]. Eur Heart J, 2021, 42(30):2885-2896.
|
[23] |
Kwon JM, Kim KH, Akkus Z, et al. Artificial intelligence for detecting mitral regurgitation using electrocardiography[J]. J Electrocardiol, 2020, 59:151-157.
|
[24] |
朱彩华, 张伊楚, 王晨曦, 等. 基于人工智能识别心电图的一种低钾血症快速辅助诊断模型[J]. 中国心脏起搏与心电生理杂志, 2021, 35(1):44-48.
|
[25] |
Rudd KE, Johnson SC, Agesa KM, et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study[J]. Lancet, 2020, 395(10219):200-211.
|
[26] |
Kwon JM, Lee YR, Jung MS, et al. Deep-learning model for screening sepsis using electrocardiography[J]. Scand J Trauma Resusc Emerg Med, 2021, 29(1):145.
|
[27] |
Sadasivuni S, Bhanushali SP, Singamsetti SS, et al. Multi-task learning mixed-signal classifier for in-situ detection of atrial fibrillation and sepsis[C]//2021 IEEE Biomedical Circuits and Systems Conference (BioCAS). IEEE, 2021: 1-4.
|
[28] |
Byun S, Kim AY, Jang EH, et al. Detection of major depressive disorder from linear and nonlinear heart rate variability features during mental task protocol[J]. Comput Biol Med, 2019, 112:103381.
|
[29] |
Kuang D, Yang R, Chen X, et al. Depression recognition according to heart rate variability using Bayesian Networks[J]. J Psychiatr Res, 2017, 95:282-287.
|
[30] |
Zang X, Li B, Zhao L, et al. End-to-end depression recognition based on a one-dimensional convolution neural network model using two-lead ECG signal[J]. J Med Biol Eng, 2022, 42(2):225-233.
|
[31] |
Ozdemir MA, Ozdemir GD, Guren O. Classification of COVID-19 electrocardiograms by using hexaxial feature mapping and deep learning[J]. BMC Med Inform Decis Mak, 2021, 21(1):170.
|
[32] |
Ahn JC, Attia ZI, Rattan P, et al. Development of the AI-cirrhosis-ECG score: an electrocardiogram-based deep learning model in cirrhosis[J]. Am J Gastroenterol, 2022, 117(3):424-432.
|
[33] |
Porumb M, Stranges S, Pescapè A, et al. Precision medicine and artificial intelligence: a pilot study on deep learning for hypoglycemic events detection based on ECG[J]. Sci Rep, 2020, 10(1):170.
|
[34] |
Benjamens S, Dhunnoo P, Meskó B. The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database[J]. NPJ Digit Med, 2020, 3:118.
|
[35] |
Tison GH, Siontis KC, Abreau S, et al. Assessment of disease status and treatment response with artificial intelligence-enhanced electrocardiography in obstructive hypertrophic cardiomyopathy[J]. J Am Coll Cardiol, 2022, 79(10):1032-1034.
|
[36] |
Lin Chin. Artificial intelligence-enable ECG system for future cardiovasculaor risk stratification[EB/OL]. (2021-12-11) [2022-5-6].
URL
|
[37] |
Isakadze N, Martin SS. How useful is the smartwatch ECG?[J]. Trends Cardiovasc Med, 2020, 30(7):442-448.
|
[38] |
Badertscher P, Lischer M, Mannhart D, et al. Clinical validation of a novel smartwatch for automated detection of atrial fibrillation[J]. Heart Rhythm O2, 2022, 3(2):208-210.
|
[39] |
Chorba JS, Shapiro AM, Le L, et al. Deep learning algorithm for automated cardiac murmur detection via a digital stethoscope platform[J]. J Am Heart Assoc, 2021, 10(9):e019905.
|