切换至 "中华医学电子期刊资源库"

中华心脏与心律电子杂志 ›› 2023, Vol. 11 ›› Issue (01) : 28 -31. doi: 10.3877/cma.j.issn.2095-6568.2023.01.006

人工智能 大数据

人工智能辅助心电图的临床应用
王昱1, 谢中立1, 王霞飞2, 魏倩囡1, 郑雪梅3, 牛晨光1,()   
  1. 1. 475000 开封,河南大学第一附属医院临床资源转化实验室
    2. 475000 开封,河南大学第一附属医院病理科
    3. 475000 开封,河南大学第一附属医院心内科
  • 收稿日期:2022-07-08 出版日期:2023-03-25
  • 通信作者: 牛晨光
  • 基金资助:
    国家自然科学基金(81800395); 河南省医学科技攻关省部共建(SBGJ2018061); 河南大学研究生英才计划(SYLYC2022152)

Clinical application of artificial intelligence assisted electrocardiogram

Yu Wang1, Zhongli Xie1, Xiafei Wang2, Qiannan Wei1, Xuemei Zheng3, Chenguang Niu1,()   

  1. 1. The Key Laboratory of Clinical Resources Translation,The First Affiliated Hospital of Henan University, Kaifeng 475000, China
    2. Department of Pathology,The First Affiliated Hospital of Henan University, Kaifeng 475000, China
    3. Department of Cardiology,The First Affiliated Hospital of Henan University, Kaifeng 475000, China
  • Received:2022-07-08 Published:2023-03-25
  • Corresponding author: Chenguang Niu
引用本文:

王昱, 谢中立, 王霞飞, 魏倩囡, 郑雪梅, 牛晨光. 人工智能辅助心电图的临床应用[J]. 中华心脏与心律电子杂志, 2023, 11(01): 28-31.

Yu Wang, Zhongli Xie, Xiafei Wang, Qiannan Wei, Xuemei Zheng, Chenguang Niu. Clinical application of artificial intelligence assisted electrocardiogram[J]. Chinese Journal of Heart and Heart Rhythm(Electronic Edition), 2023, 11(01): 28-31.

基于人工智能的心电图诊断(AI-ECG),能够辅助医生提供快速而准确的检查结果,并可以诊断出心电图常规疾病诊断谱之外的许多心血管疾病和非心血管疾病。AI-ECG已在疾病筛查、临床诊断、转归预测等方面表现出强大应用前景,有望在临床上实现大规模应用,并在非临床场景发挥独特作用。

[1]
王晓刚, 王晓亮, 董静. 眼科人工智能应用研究进展[J]. 中华眼外伤职业眼病杂志, 2020, 42(11):876-880.
[2]
Liu Y, Jain A, Eng C, et al. A deep learning system for differential diagnosis of skin diseases[J]. Nat Med, 2020, 26(6):900-908.
[3]
McKinney SM, Sieniek M, Godbole V, et al. International evaluation of an AI system for breast cancer screening[J]. Nature, 2020, 577(7788):89-94.
[4]
刘蓬然, 薛明迪, 霍彤彤, 等. 人工智能技术在抗击新型冠状病毒肺炎疫情中的应用进展[J]. 中华全科医师杂志, 2022, 21(6):567-572.
[5]
Hannun AY, Rajpurkar P, Haghpanahi M, et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network[J]. Nat Med, 2019, 25(1):65-69.
[6]
Chang KC, Hsieh PH, Wu MY, et al. Usefulness of multi-labelling artificial intelligence in detecting rhythm disorders and acute ST-elevation myocardial infarction on 12-lead electrocardiogram[J].Ehj Dh,2021, 2(2): 299-310.
[7]
Zhang H, Liu C, Zhang Z, et al. Recurrence plot-based approach for cardiac arrhythmia classification using inception-resNet-v2 [J]. Front Physiol, 2021, 12: 648950.
[8]
Attia ZI, Noseworthy PA, Lopez-Jimenez F, et al. An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction[J]. Lancet, 2019, 394(10201):861-867.
[9]
Raghunath S, Pfeifer JM, Ulloa-Cerna AE, et al. Deep neural networks can predict new-onset atrial fibrillation from the 12-lead ECG and help identify those at risk of atrial fibrillation-related stroke[J]. Circulation, 2021, 143(13): 1287-1298.
[10]
Khurshid S, Friedman S, Reeder C, et al. ECG-based deep learning and clinical risk factors to predict atrial fibrillation[J]. Circulation, 2022, 145(2): 122-133.
[11]
Acharya UR, Fujita H, Sudarshan VK, et al. Automated detection and localization of myocardial infarction using electrocardiogram: a comparative study of different leads[J]. Knowl-based syst, 2016, 99:146-156.
[12]
Kumar M, Pachori R, Acharya U. Automated diagnosis of myocardial infarction ECG signals using sample entropy in flexible analytic wavelet transform framework[J]. Entropy, 2017, 19(9):488.
[13]
Al-Zaiti S, Besomi L, Bouzid Z, et al. Machine learning-based prediction of acute coronary syndrome using only the pre-hospital 12-lead electrocardiogram[J]. Nat Commun, 2020, 11(1): 3966.
[14]
Attia ZI, Kapa S, Lopez-Jimenez F, et al. Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram[J]. Nat Med, 2019, 25(1):70-74.
[15]
Attia ZI, Kapa S, Yao X, et al. Prospective validation of a deep learning electrocardiogram algorithm for the detection of left ventricular systolic dysfunction[J]. J Cardiovasc Electrophysiol, 2019, 30(5): 668-674.
[16]
Yao X, Rushlow DR, Inselman JW, et al. Artificial intelligence-enabled electrocardiograms for identification of patients with low ejection fraction: a pragmatic, randomized clinical trial[J]. Nat Med, 2021, 27(5):815-819.
[17]
窦铮,范龙英,张晓霞. 肥厚型心肌病的最新研究进展[J].心肺血管病杂志.2021,40(3):291-293.
[18]
Ko WY, Siontis KC, Attia ZI, et al. Detection of hypertrophic cardiomyopathy using a convolutional neural network-enabled electrocardiogram[J]. J Am Coll Cardiol, 2020, 75(7):722-733.
[19]
Siontis KC, Liu K, Bos JM, et al. Detection of hypertrophic cardiomyopathy by an artificial intelligence electrocardiogram in children and adolescents[J]. Int J Cardiol, 2021, 340:42-47.
[20]
Goto S, Ichihara G, Ikura H, et al. A combined, fully automated electrocardiogram and echocardiogram strategy for detection of hypertrophic cardiomyopathy[J]. Circulation, 2021, 144(Suppl_1): A11222-A11222.
[21]
Kwon JM, Lee SY, Jeon KH, et al. Deep learning-based algorithm for detecting aortic stenosis using electrocardiography[J]. J Am Heart Assoc, 2020, 9(7):e014717.
[22]
Cohen-Shelly M, Attia ZI, Friedman PA, et al. Electrocardiogram screening for aortic valve stenosis using artificial intelligence[J]. Eur Heart J, 2021, 42(30):2885-2896.
[23]
Kwon JM, Kim KH, Akkus Z, et al. Artificial intelligence for detecting mitral regurgitation using electrocardiography[J]. J Electrocardiol, 2020, 59:151-157.
[24]
朱彩华, 张伊楚, 王晨曦, 等. 基于人工智能识别心电图的一种低钾血症快速辅助诊断模型[J]. 中国心脏起搏与心电生理杂志, 2021, 35(1):44-48.
[25]
Rudd KE, Johnson SC, Agesa KM, et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study[J]. Lancet, 2020, 395(10219):200-211.
[26]
Kwon JM, Lee YR, Jung MS, et al. Deep-learning model for screening sepsis using electrocardiography[J]. Scand J Trauma Resusc Emerg Med, 2021, 29(1):145.
[27]
Sadasivuni S, Bhanushali SP, Singamsetti SS, et al. Multi-task learning mixed-signal classifier for in-situ detection of atrial fibrillation and sepsis[C]//2021 IEEE Biomedical Circuits and Systems Conference (BioCAS). IEEE, 2021: 1-4.
[28]
Byun S, Kim AY, Jang EH, et al. Detection of major depressive disorder from linear and nonlinear heart rate variability features during mental task protocol[J]. Comput Biol Med, 2019, 112:103381.
[29]
Kuang D, Yang R, Chen X, et al. Depression recognition according to heart rate variability using Bayesian Networks[J]. J Psychiatr Res, 2017, 95:282-287.
[30]
Zang X, Li B, Zhao L, et al. End-to-end depression recognition based on a one-dimensional convolution neural network model using two-lead ECG signal[J]. J Med Biol Eng, 2022, 42(2):225-233.
[31]
Ozdemir MA, Ozdemir GD, Guren O. Classification of COVID-19 electrocardiograms by using hexaxial feature mapping and deep learning[J]. BMC Med Inform Decis Mak, 2021, 21(1):170.
[32]
Ahn JC, Attia ZI, Rattan P, et al. Development of the AI-cirrhosis-ECG score: an electrocardiogram-based deep learning model in cirrhosis[J]. Am J Gastroenterol, 2022, 117(3):424-432.
[33]
Porumb M, Stranges S, Pescapè A, et al. Precision medicine and artificial intelligence: a pilot study on deep learning for hypoglycemic events detection based on ECG[J]. Sci Rep, 2020, 10(1):170.
[34]
Benjamens S, Dhunnoo P, Meskó B. The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database[J]. NPJ Digit Med, 2020, 3:118.
[35]
Tison GH, Siontis KC, Abreau S, et al. Assessment of disease status and treatment response with artificial intelligence-enhanced electrocardiography in obstructive hypertrophic cardiomyopathy[J]. J Am Coll Cardiol, 2022, 79(10):1032-1034.
[36]
Lin Chin. Artificial intelligence-enable ECG system for future cardiovasculaor risk stratification[EB/OL]. (2021-12-11) [2022-5-6].

URL    
[37]
Isakadze N, Martin SS. How useful is the smartwatch ECG?[J]. Trends Cardiovasc Med, 2020, 30(7):442-448.
[38]
Badertscher P, Lischer M, Mannhart D, et al. Clinical validation of a novel smartwatch for automated detection of atrial fibrillation[J]. Heart Rhythm O2, 2022, 3(2):208-210.
[39]
Chorba JS, Shapiro AM, Le L, et al. Deep learning algorithm for automated cardiac murmur detection via a digital stethoscope platform[J]. J Am Heart Assoc, 2021, 10(9):e019905.
[1] 张梅芳, 谭莹, 朱巧珍, 温昕, 袁鹰, 秦越, 郭洪波, 侯伶秀, 黄文兰, 彭桂艳, 李胜利. 早孕期胎儿头臀长正中矢状切面超声图像的人工智能质控研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 945-950.
[2] 杨菲菲, 林锡祥, 陈亦新, 王秋霜, 张丽伟, 陈煦, 张梅青, 王淑华, 何昆仑. 基于深度学习的超声心动图自动识别节段性室壁运动异常的研究[J]. 中华医学超声杂志(电子版), 2023, 20(04): 424-429.
[3] 唐玮, 何融泉, 黄素宁. 深度学习在乳腺癌影像诊疗和预后预测中的应用[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 323-328.
[4] 李锐颖, 危望, 王达志, 时志斌. 深度学习技术在膝关节疾病中的研究现状与展望[J]. 中华关节外科杂志(电子版), 2023, 17(05): 722-725.
[5] 范帅华, 郭伟, 郭军. 基于机器学习的决策树算法在血流感染预后预测中应用现状及展望[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 289-293.
[6] 李琛, 张惟佳, 潘亚萍. 牙周炎与系统性疾病之间关系的应用思考:2022年EFP和WONCA欧洲分部联合研讨会共识报告的解读及启示[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 322-327.
[7] 李晓阳, 刘柏隆, 周祥福. 大数据及人工智能对女性盆底功能障碍性疾病的诊断及风险预测[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 549-552.
[8] 邢晓伟, 刘雨辰, 赵冰, 王明刚. 基于术前腹部CT的卷积神经网络对腹壁切口疝术后复发预测价值[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 677-681.
[9] 韩冰, 顾劲扬. 深度学习神经网络在肝癌诊疗中的研究及应用前景[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 480-485.
[10] 雷漫诗, 邓锶锶, 汪昕蓉, 黄锦彬, 向青, 熊安妮, 孟占鳌. 人工智能辅助压缩感知技术在上腹部T2WI压脂序列中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 551-556.
[11] 王晓东, 汪恺, 葛昭, 丁忠祥, 徐骁. 计算机视觉技术在肝癌肝移植疗效提升中的研究进展[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 361-366.
[12] 葛云鹏, 崔红元, 宋京海. 人工智能在原发性肝癌诊断、治疗及预后中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 367-371.
[13] 李京珂, 张妍春, 武佳懿, 任秀瑜. 深度学习在糖尿病视网膜病变筛查、评级及管理中的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 241-246.
[14] 刘飞, 王影新, 马骍, 辛灵, 程元甲, 刘倩, 王悦, 张军军. 不同介质腔内心电图定位技术在乳腺癌上臂输液港植入术中应用的随机对照研究[J]. 中华临床医师杂志(电子版), 2023, 17(07): 760-764.
[15] 胡平, 鄢腾峰, 周海柱, 祝新根. 人工智能在非增强CT图像中颅内出血早期检出和血肿分割的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 410-416.
阅读次数
全文


摘要