切换至 "中华医学电子期刊资源库"

中华心脏与心律电子杂志 ›› 2024, Vol. 12 ›› Issue (04) : 225 -233. doi: 10.3877/cma.j.issn.2095-6568.2024.04.006

综述

左束支夺获的判断方法与临床意义
曾嘉欣1, 邹建刚1,()   
  1. 1.210029 南京,南京医科大学第一附属医院(江苏省人民医院)心血管内科
  • 收稿日期:2024-02-04 出版日期:2024-12-25
  • 通信作者: 邹建刚
  • 基金资助:
    国家自然科学基金(82070521)江苏省人民医院临床能力提升工程项目(JSPH-MA-2020-3)

Left bundle branch capture: criteria and significance

Jiaxin Zeng1, Jiangang Zou1,()   

  1. 1.Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), 210029 Nanjing, China
  • Received:2024-02-04 Published:2024-12-25
  • Corresponding author: Jiangang Zou
引用本文:

曾嘉欣, 邹建刚. 左束支夺获的判断方法与临床意义[J/OL]. 中华心脏与心律电子杂志, 2024, 12(04): 225-233.

Jiaxin Zeng, Jiangang Zou. Left bundle branch capture: criteria and significance[J/OL]. Chinese Journal of Heart and Heart Rhythm(Electronic Edition), 2024, 12(04): 225-233.

左束支起搏和左心室间隔部起搏在激活左心室方面有显著的电生理机制的差异,区分的关键是判断左束支是否夺获。本文将对现有判断左束支夺获的方法及左束支夺获的临床意义进行综述。

图1 不同起搏部位示意图及心电图特征[5](1A、1C 为在起搏过程中,NS-LBBP 到LVSP 和NS-LBBP 到S-LBBP转换的心电图特征;1B为在不同类型的起搏模式中,导线尖端相对于左束支的位置;黑点为低输出起搏;蓝点为高输出起搏,5 V/0.5 ms max)
图2 左束支的解剖示意图[7](2A为大体解剖模拟右前斜视图,蓝色虚线标记希氏束,作为确定左束支起始位置的参考,起始位置在三尖瓣环心室端以下0~15 mm,红色虚线标记室间隔左侧左束支;2B 为左后斜位观察左束支及其3个分支的心内膜位置,1.左前分支,2.左间隔支,3.左后分支)
图3 电生理学特征[14][3A为无COI的左束支电位(PoLBB),LVAT 72 ms;3B为输出为2.5 V/0.5 ms时间隔起搏Stim-LVAT 90 ms;3C 为由深间隔起搏转换至LBB 夺获时V1和V5导联心电图形态变化;3D 为输出为1.5 V/0.5 ms 且NS-LBBP 时Stim-LVAT 为72 ms;3E为输为出0.5 V/0.5 ms且S-LBBP时Stim-LVAT为72 ms;3F为同时记录到PoLBB和COI,自身LVAT为72 ms]
图8 LBBP、HBP、RVSP 和LVSP 的电激活示意图[1A 为LBBP 通过LBB 纤维和浦肯野网络快速激活左心室侧壁,产生最短的左心室达峰时间(LVAT);1B为希氏束位于LBB纤维上方,产生比LBBP相对更长的LVAT;1C为RVSP中电激动通过间隔传播,随后通过缓慢的细胞-细胞传导至左心室心肌,因此RVSP 时LVAT 最长;1D 为LVSP 较RVSP 无需经过跨间隔传导,所以LVSP 产生的LVAT 相对较RVSP 更短。左下角显示了4 种不同起搏模式V1和V6导联起搏QRS波的形态]
图4 程序性深间隔刺激示意图[16][采用起搏导线进行程序性深间隔刺激。基线LBBB患者LBB不应期为320 ms (LBB+室间隔心肌夺获为320 ms),室间隔心肌不应期为300 ms。S1 600 ms到S2 310 ms表示LBB 失夺获后QRS波形态、电轴的变化和时限的延长]
图6 窄QRS 波患者不同间隔起搏模式下Paced-V6RWPT 的测量方法及变化[20][6A、6B 为LBBpo-V₆RWPT= LBBCT(21.97 ms)+ Native-V6RWPT(37.63 ms);6C、6D、6E 为Paced-V6RWPT 在RVSP 时最长,转变为LVSP 时缩短,在LBBP时最短。LBBP时Paced-V6RWPT=LBBpo-V6RWPT]
图7 左束支区域起搏(LBBAP)中不同心室激活模式下的QRS 形态变化[21][7A 为NS-LBBP 向S-LBBP 转变时因为失去对间隔心肌的夺获,右心室的激活通过左心室间隔束的跨室间隔传导进行,RV 延迟激活的心电图标志是V1 R 波峰值时间延长和V6-V1间期延长;7B为NS-LBBP向LVSP转变时对右心室的激活未发生改变,但因为LBB失夺获所以左心室激活延迟]
[1]
Chung MK, Patton KK, Lau CP, et al. 2023 HRS/APHRS/LA‐HRS Guideline on cardiac physiologic pacing for the avoid‐ance and mitigation of heart failure[J]. Heart Rhythm,2023, 20(9):e17-e91.
[2]
Huang W, Su L, Wu S, et al. A novel pacing strategy with low and stable output: pacing the left bundle branch im‐mediately beyond the conduction block[J]. Can J Cardiol,2017, 33(12):1736.e1-1736.e3.
[3]
Hou X, Qian Z, Wang Y, et al. Feasibility and cardiac syn‐chrony of permanent left bundle branch pacing through the interventricular septum[J]. Europace, 2019, 21(11):1694-1702.
[4]
中华医学会心电生理和起搏分会, 中国医师协会心律学专业委员会. 希氏-浦肯野系统起搏中国专家共识[J]. 中华心律失常学杂志, 2021, 25(1): 10-36.
[5]
Wu S, Chen X, Wang S, et al. Evaluation of the criteria to distinguish left Bundle branch pacing from left ventricu‐lar septal pacing[J]. JACC Clin Electrophysiol, 2021, 7(9):1166-1177.
[6]
Curila K, Jurak P, Vernooy K, et al. Left ventricular myocar‐dial septal pacing in close proximity to LBB does not pro‐long the duration of the left ventricular lateral wall depo‐larization compared to LBB pacing[J]. Front Cardiovasc Med, 2021, 8:787414.
[7]
Ponnusamy SS, Vijayaraman P. Evaluation of criteria for left bundle branch capture[J]. Card Electrophysiol Clin,2022, 14(2):191-202.
[8]
Cabrera JÁ, Porta-Sánchez A, Tung R, et al. Tracking down the anatomy of the left bundle branch to optimize left bundle branch pacing[J]. JACC Case Rep, 2020, 2(5):750-755.
[9]
Elizari MV. The normal variants in the left bundle branch system[J]. J Electrocardiol, 2017, 50(4):389-399.
[10]
Upadhyay GA, Cherian T, Shatz DY, et al. Response by upadhyay et al to letter regarding article, "Intracardiac de‐lineation of septal conduction in left bundle-branch block patterns: mechanistic evidence of left intrahisian block circumvented by His bundle pacing"[J]. Circulation, 2019,140(14):e713-e714.
[11]
Chen X, Wu S, Su L, et al. The characteristics of the electro‐cardiogram and the intracardiac electrogram in left bun‐dle branch pacing[J]. J Cardiovasc Electrophysiol, 2019,30(7):1096-1101.
[12]
Wu S, Su L, Zheng R, et al. New-onset intrinsic and paced QRS morphology of right bundle branch block pattern af‐ter atrioventricular nodal ablation: Longitudinal dissocia‐tion or anatomical bifurcation?[J]. J Cardiovasc Electro‐physiol, 2020, 31(5):1218-1221.
[13]
Huang W, Chen X, Su L, et al. A beginner's guide to perma‐nent left bundle branch pacing[J]. Heart Rhythm, 2019,16(12):1791-1796.
[14]
Huang W, Wu S, Vijayaraman P, et al. Cardiac resynchroni‐zation therapy in patients with nonischemic cardiomyop‐athy using left bundle branch pacing[J]. JACC Clin Electro‐physiol, 2020, 6(7):849-858.
[15]
Su L, Xu T, Cai M, et al. Electrophysiological characteristics and clinical values of left bundle branch current of injury in left bundle branch pacing[J]. J Cardiovasc Electrophysi‐ol, 2020, 31(4):834-842.
[16]
Qian Z, Wang Y, Hou X, et al. A pilot study to determine if left ventricular activation time is a useful parameter for left bundle branch capture: validated by ventricular me‐chanical synchrony with SPECT imaging[J]. J Nucl Cardiol,2021, 28(3):1153-1161.
[17]
Ponnusamy SS, Arora V, Namboodiri N, et al. Left bundle branch pacing: a comprehensive review[J]. J Cardiovasc Electrophysiol, 2020, 31(9):2462-2473.
[18]
Su L, Wang S, Wu S, et al. Long-term safety and feasibility of left bundle branch pacing in a large single-center study[J]. Circ Arrhythm Electrophysiol, 2021, 14(2):e009261.
[19]
Jastrzębski M, Moskal P, Bednarek A, et al. Programmed deep septal stimulation: a novel maneuver for the diagno‐sis of left bundle branch capture during permanent pacing[J]. J Cardiovasc Electrophysiol, 2020, 31(2):485-493.
[20]
Jastrzębski M, Kiełbasa G, Curila K, et al. Physiology-based electrocardiographic criteria for left bundle branch cap‐ture[J]. Heart Rhythm, 2021, 18(6):935-943.
[21]
Li M, Li C, Li J, et al. An individualized criterion for left bundle branch capture in patients with a narrow QRS complex[J]. Heart Rhythm, 2023: S1547-5271(23)02897-02897.
[22]
Jastrzębski M, Burri H, Kiełbasa G, et al. The V6-V1 inter‐peak interval: a novel criterion for the diagnosis of left bundle branch capture[J]. Europace, 2022, 24(1):40-47.
[23]
Chen X, Qian Z, Zou F, et al. Differentiating left bundle branch pacing and left ventricular septal pacing: an algo‐rithm based on intracardiac electrophysiology[J]. J Cardio‐vasc Electrophysiol, 2022, 33(3):448-457.
[24]
Qian Z, Xue S, Zou F, et al. New criterion to determine left bundle branch capture on the basis of individualized His bundle or right ventricular septal pacing[J]. Heart Rhythm, 2022, 19(12):1984-1992.
[25]
Vijayaraman P, Jastrzebski M. Novel criterion to diagnose left bundle branch capture in patients with left bundle branch block[J]. JACC Clin Electrophysiol, 2021, 7(6):808-810.
[26]
黄珍珍, 梁义秀, 汪菁峰, 等. 左束支起搏与双心室起搏对合并左束支传导阻滞心力衰竭患者的电同步性和血流动力学的影响[J]. 中华心律失常学杂志, 2022, 26(5):445-449.
[27]
Wang Y, Zhu H, Hou X, et al. Randomized trial of left bun‐dle branch vs biventricular pacing for Cardiac Resynchro‐nization Therapy[J]. J Am Coll Cardiol, 2022, 80(13):1205-1216.
[28]
Diaz J C, Sauer W H, Duque M, et al. Left bundle branch ar‐ea pacing versus biventricular pacing as initial strategy for cardiac resynchronization[J]. JACC: Clinical Electro‐physiology, 2023, 9(8): 1568-1581.
[29]
Vijayaraman P, Sharma PS, Cano Ó, et al. Comparison of left bundle branch area pacing and biventricular pacing in candidates for resynchronization therapy[J]. J Am Coll Cardiol, 2023, 82(3):228-241.
[30]
Tan E, Soh R, Lee JY, et al. Clinical outcomes in conduction system pacing compared to right ventricular pacing in bradycardia[J]. JACC Clin Electrophysiol, 2023, 9(7 Pt 1):992-1001.
[31]
Jastrzębski M, Kiełbasa G, Cano O, et al. Left bundle branch area pacing outcomes: the multicentre European MELOS study[J]. Eur Heart J, 2022, 43(40):4161-4173.
[32]
Curila K, Jurak P, Jastrzebski M, et al. Left bundle branch pacing compared to left ventricular septal myocardial pac‐ing increases interventricular dyssynchrony but acceler‐ates left ventricular lateral wall depolarization[J]. Heart Rhythm, 2021, 18(8):1281-1289.
[33]
Diaz JC, Tedrow UB, Duque M, et al. Left bundle branch pacing vs left ventricular septal pacing vs biventricular pacing for cardiac resynchronization therapy[J]. JACC Clin Electrophysiol. 2023:S2405-500X(23)00807-1.
[34]
Zhang W, Chen L, Zhou X, et al. Resynchronization effects and clinical outcomes during left bundle branch area pac‐ing with and without conduction system capture[J]. Clin Cardiol, 2023, 46(3):287-295.
[1] 陈芬, 葛贝贝, 王小贤, 李明霞, 徐芳, 史坚, 郭冠军, 方爱娟, 史中青, 戚占如, 陈慧, 姚静. 左束支传导阻滞性心肌病心脏电-机械重构的实验研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(10): 978-985.
[2] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[3] 杨敬武, 周美君, 陈雨凡, 李素淑, 何燕妮, 崔楠, 刘红梅. 人工智能超声结合品管圈活动对低年资超声医师甲状腺结节风险评估能力的作用[J/OL]. 中华医学超声杂志(电子版), 2024, 21(05): 522-526.
[4] 明昊, 肖迎聪, 巨艳, 宋宏萍. 乳腺癌风险预测模型的研究现状[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 287-291.
[5] 狄海萍, 郑军杰, 刘磊, 郭海娜, 邢培朋, 曹大勇, 马超, 黄万新, 张博, 夏成德, 周超. 人工真皮联合富血小板纤维蛋白修复小面积深度创面的临床疗效[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 288-293.
[6] 叶莉, 杜宇. 深度学习在牙髓根尖周病临床诊疗中的应用[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(06): 351-356.
[7] 熊鹰, 林敬莱, 白奇, 郭剑明, 王烁. 肾癌自动化病理诊断:AI离临床还有多远?[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 535-540.
[8] 李伟, 宋子健, 赖衍成, 周睿, 吴涵, 邓龙昕, 陈锐. 人工智能应用于前列腺癌患者预后预测的研究现状及展望[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 541-546.
[9] 黄俊龙, 李文双, 李晓阳, 刘柏隆, 陈逸龙, 丘惠平, 周祥福. 基于盆底彩超的人工智能模型在女性压力性尿失禁分度诊断中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 597-605.
[10] 莫淇舟, 苏劲, 黄健, 李健维, 李思宁, 柳建军. 智能控压输尿管软镜碎石吸引取石术在直径10~25 mm上尿路结石中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 497-502.
[11] 李义亮, 苏拉依曼·牙库甫, 麦麦提艾力·麦麦提明, 克力木·阿不都热依木. 机器人与腹腔镜食管裂孔疝修补术联合Nissen 胃底折叠术短期疗效分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(05): 512-517.
[12] 蔡玉琳, 牛丹, 马丹, 王爽. 不同CT 重建算法对人工智能肺结节诊断的意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(06): 931-935.
[13] 彭子洋, 王志博, 巴赫, 颜彦, 彭浩茜, 李宇, 刘学民, 向俊西, 吴荣谦, 吕毅. 增强现实、虚拟现实与混合现实在腔镜肝脏外科中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(01): 13-17.
[14] 蒋永祥. 人工晶状体囊袋内脱位的手术治疗[J/OL]. 中华眼科医学杂志(电子版), 2024, 14(04): 1-1.
[15] 孙铭远, 褚恒, 徐海滨, 张哲. 人工智能应用于多发性肺结节诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 785-790.
阅读次数
全文


摘要