切换至 "中华医学电子期刊资源库"

中华心脏与心律电子杂志 ›› 2022, Vol. 10 ›› Issue (04) : 252 -256. doi: 10.3877/cma.j.issn.2095-6568.2022.04.012

所属专题: 总编推荐

心血管前沿

慢性心肌缺血综合征的新认识
白晓君1, 余航1, 吴岳1, 张卫萍1,()   
  1. 1. 710061 西安,西安交通大学第一附属医院心血管内科
  • 收稿日期:2022-12-19 出版日期:2022-12-25
  • 通信作者: 张卫萍
  • 基金资助:
    国家自然科学基金(81973507)

Research progress on chronic myocardial ischemia syndrome

Xiaojun Bai1, Hang Yu1, Yue Wu1, Weiping Zhang1,()   

  1. 1. Department of Cardiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
  • Received:2022-12-19 Published:2022-12-25
  • Corresponding author: Weiping Zhang
引用本文:

白晓君, 余航, 吴岳, 张卫萍. 慢性心肌缺血综合征的新认识[J/OL]. 中华心脏与心律电子杂志, 2022, 10(04): 252-256.

Xiaojun Bai, Hang Yu, Yue Wu, Weiping Zhang. Research progress on chronic myocardial ischemia syndrome[J/OL]. Chinese Journal of Heart and Heart Rhythm(Electronic Edition), 2022, 10(04): 252-256.

本文从冠状动脉微血管功能障碍、心外膜痉挛和神经调节改变等角度阐述了除阻塞性动脉粥样硬化外,可能导致慢性心肌缺血的机制,强调从单一的慢性冠状动脉“疾病”转移到更广泛和更包容的“慢性心肌缺血综合征”的概念。同时对慢性心肌缺血综合征的概念、机制、诊断、治疗和预后进行深入地分析和探讨,希望能对未来心肌缺血治疗临床实践模式的转变有促进作用。

表1 血管活性物质对冠状动脉血管反应性的影响25
表2 评价冠状动脉微血管疾病的诊断技术21
方式 技术 药物 参数 诊断界值 优势
非侵入性
超声心动图 LAD动脉近端脉冲多普勒

腺苷

双嘧达莫

瑞加诺生

CFRV CFRV<2 价格低;无射线暴露;无风险
PET

连续静息和血管扩张压力

灌注成像

腺苷

双嘧达莫

瑞加诺生

铷82

13N-ammonia

MPR

MBF

MPR<2

评价冠状动脉微血管功能的金

标准;低射线暴露

CMR

首过血管扩张激发血流动

力学和静息灌注显像

腺苷

双嘧达莫

瑞加诺生

钆类造影剂

MPR

MBF

MPRI

MPRI<2

无射线暴露;良好空间分辨率;

组织特征分析;同时评估所

有的冠状动脉区域

CT 首过血管扩张应激动态负荷和静息心肌灌注显像

腺苷

双嘧达莫

瑞加诺生

碘类造影剂

MPR MPR<2

冠状动脉解剖和灌注数据结

合;对所有冠状动脉区域进

行评估

侵入性
冠状动脉造影 造影显示冠脉血流节段 碘类造影剂

TIMI血流

TFC

TIMI-2

TFC>25 fr

不需要其他费用
冠状动脉内温度-压力导丝

使用药物(计算平均运输

时间)或连续热稀释技

术估计冠脉血流(不需

要药物诱导高血流)

腺苷

罂粟碱

盐溶液

CFR

IMR

CFR<2~2.5

IMR>25 U

CFR和IMR综合评估受损的血

管扩张和微血管收缩高反应

性;IMR对微循环具有特异性 并不受静息血流动力学影响

冠状动脉多普勒压力-血流

导丝

直接测量冠脉血流峰值速

腺苷

CFR

HMR

CFR<2.5

HMR>1.7 mmHg/(cm·s)

CFR和HMR综合评估受损血

管扩张和微血管收缩高反应

性;HMR不依赖静息冠状动

脉血流;同时测定FFR

冠状动脉激发试验 冠脉内灌注血管活性药物

乙酰胆碱

麦角新碱

- -

易操作;不需要附加设备;同时

评估冠状动脉造影

[1]
Kaski JC, Crea F, Gersh BJ, et al. Reappraisal of ischemic heart disease[J]. Circulation, 2018, 138(14):1463-1480.
[2]
Sucato V, Testa G, Puglisi S, et al. Myocardial infarction with non-obstructive coronary arteries (MINOCA): intracoronary imaging-based diagnosis and management[J]. J Cardiol, 2021, 77(5):444-451.
[3]
Lindahl B, Baron T, Albertucci M, et al. Myocardial infarction with non-obstructive coronary artery disease[J]. EuroIntervention, 2021, 17(11):e875-e887.
[4]
Padro T, Manfrini O, Bugiardini R, et al. ESC Working Group on coronary pathophysiology and microcirculation position paper on 'coronary microvascular dysfunction in cardiovascular disease'[J]. Cardiovasc Res, 2020, 116(4):741-755.
[5]
Ford TJ, Stanley B, Good R, et al. Stratified medical therapy using invasive coronary function testing in angina: The CorMicA Trial[J]. J Am Coll Cardiol, 2018, 72(23 Pt A):2841-2855.
[6]
Tamis-Holland JE, Jneid H, Reynolds HR, et al. Contemporary diagnosis and management of patients with myocardial infarction in the absence of obstructive coronary artery disease: a scientific statement from the American Heart Association[J]. Circulation, 2019, 139(18): e891-e908.
[7]
Dhoot A, Liu S, Savu A, et al. Cardiac stress testing after coronary revascularization[J]. Am J Cardiol, 2020, 136:9-14.
[8]
Rush CJ, Berry C, Oldroyd KG, et al. Prevalence of coronary artery disease and coronary microvascular dysfunction in patients with heart failure with preserved ejection fraction[J]. JAMA Cardiol, 2021, 6(10):1130-1143.
[9]
Vancheri F, Longo G, Vancheri S, et al. Coronary microvascular dysfunction[J]. J Clin Med, 2020, 9(9):2880.
[10]
Godo S, Suda A, Takahashi J, et al. Coronary microvascular dysfunction[J]. Arterioscler Thromb Vasc Biol, 2021, 41(5):1625-1637.
[11]
Liu M, Lovern C, Lycett K, et al. The association between markers of inflammation and retinal microvascular parameters: a systematic review and meta-analysis[J]. Atherosclerosis, 2021, 336:12-22.
[12]
Tona F, Montisci R, Iop L, et al. Role of coronary microvascular dysfunction in heart failure with preserved ejection fraction[J]. Rev Cardiovasc Med, 2021, 22(1):97-104.
[13]
Reynolds HR, Picard MH, Spertus JA, et al. Natural history of patients with ischemia and no obstructive coronary artery disease: The CIAO-ISCHEMIA Study[J]. Circulation, 2021, 144(13):1008-1023.
[14]
Abdu FA, Mohammed AQ, Liu L, et al. Myocardial infarction with nonobstructive coronary arteries (MINOCA): a review of the current position[J]. Cardiology, 2020, 145(9):543-552.
[15]
Hubert A, Seitz A, Pereyra VM, et al. Coronary artery spasm: the interplay between endothelial dysfunction and vascular smooth muscle cell hyperreactivity[J]. Eur Cardiol, 2020, 15:e12.
[16]
Pirozzolo G, Seitz A, Athanasiadis A, et al. Microvascular spasm in non-ST-segment elevation myocardial infarction without culprit lesion (MINOCA)[J]. Clin Res Cardiol, 2020, 109(2):246-254.
[17]
Bechsgaard DF, Prescott E. Coronary microvascular dysfunction: a practical approach to diagnosis and management[J]. Curr Atheroscler Rep. 2021, 23(9):54.
[18]
Godo S, Takahashi J, Yasuda S, et al. Endothelium in coronary macrovascular and microvascular diseases[J]. J Cardiovasc Pharmacol, 2021, 78(Suppl 6):S19-S29.
[19]
Bairey Merz CN, Pepine CJ, Walsh MN, et al. Ischemia and no obstructive coronary artery disease (INOCA): developing evidence-based therapies and research agenda for the next decade[J]. Circulation, 2017, 135(11):1075-1092.
[20]
Del Buono MG, Montone RA, Camilli M, et al. Coronary microvascular dysfunction across the spectrum of cardiovascular diseases: JACC State-of-the-Art Review[J]. J Am Coll Cardiol, 2021, 78(13):1352-1371.
[21]
van Diemen PA, Driessen RS, Stuijfzand WJ, et al. Impact of scan quality on the diagnostic performance of CCTA, SPECT, and PET for diagnosing myocardial ischemia defined by fractional flow reserve[J]. J Cardiovasc Comput Tomogr, 2020, 14(1):60-67.
[22]
Marzilli M, Crea F, Morrone D, et al. Myocardial ischemia: From disease to syndrome[J]. Int J Cardiol, 2020, 314:32-35.
[23]
Padro T, Manfrini O, Bugiardini R, et al. ESC Working Group on coronary pathophysiology and microcirculation position paper on 'coronary microvascular dysfunction in cardiovascular disease'[J]. Cardiovasc Res, 2020, 116(4):741-755.
[24]
Camici PG, Crea F, Ferrari R. Commentary: The new ESC guidelines for the diagnosis and management of chronic coronary syndromes[J]. Int J Cardiol, 2019, 297:19-21.
[25]
Ferrari R, Camici PG, Crea F, et al. Expert consensus document: A 'diamond' approach to personalized treatment of angina[J]. Nat Rev Cardiol, 2018, 15(2):120-132.
[26]
Pragani MA, Desai KP, Morrone D, et al. The Role of nitrates in the management of stable ischemic heart disease: a review of the current evidence and guidelines[J]. Rev Cardiovasc Med, 2017, 18(1):14-20.
[27]
Schindler TH, Dilsizian V. Coronary microvascular dysfunction: clinical considerations and noninvasive diagnosis[J]. JACC Cardiovasc Imaging, 2020, 13(1 Pt 1):140-155.
[28]
Guarini G, Huqi A, Morrone D, et al. Trimetazidine and other metabolic modifiers[J]. Eur Cardiol, 2018, 13(2):104-111.
[29]
Maron DJ, Hochman JS, Reynolds HR, et al. Initial invasive or conservative strategy for stable coronary disease[J]. N Engl J Med, 2020, 382(15):1395-1407.
[30]
Bangalore S, Maron DJ, O'Brien SM, et al. Management of coronary disease in patients with advanced kidney disease[J]. N Engl J Med, 2020, 382(17):1608-1618.
[31]
Crea F, Bairey Merz CN, Beltrame JF, et al. Mechanisms and diagnostic evaluation of persistent or recurrent angina following percutaneous coronary revascularization[J]. Eur Heart J, 2019, 40(29):2455-2462.
[32]
Dai N, Che W, Liu L, et al. Diagnostic value of angiography-derived IMR for coronary microcirculation and its prognostic implication after PCI[J]. Front Cardiovasc Med, 2021, 8:735743.
[33]
Schumann CL, Mathew RC, Dean JL, et al. Functional and economic impact of INOCA and influence of coronary microvascular dysfunction[J]. JACC Cardiovasc Imaging, 2021, 14(7):1369-1379.
[1] 于桐, 孙姗姗, 刘扬. 乳腺导管原位癌的浸润转化机制及临床病理特征[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 304-307.
[2] 李蓉. 薄型子宫内膜治疗新方法[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 591-591.
[3] 严华悦, 刘子祥, 周少波. 磷酸烯醇式丙酮酸羧激酶-1在恶性肿瘤中的研究进展[J/OL]. 中华普通外科学文献(电子版), 2024, 18(06): 452-456.
[4] 胡菊英, 李银华, 洪兰, 王宏勇, 丁先军, 李承美, 谭心海. 儿童感染大叶性肺炎与支气管肺炎临床特征分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 813-816.
[5] 刘璐璐, 何羽. 慢性阻塞性肺病患者睡眠障碍的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 836-839.
[6] 邵世锋, 肖钦, 沈方龙, 张迅, 郝志鹏, 伍正彬, 谢晓娟, 王耀丽. 老年胸主动脉钝性伤的重症救治分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 762-767.
[7] 袁园园, 岳乐淇, 张华兴, 武艳, 李全海. 间充质干细胞在呼吸系统疾病模型中肺组织分布及治疗机制的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 374-381.
[8] 王庭宇, 邵联波, 刘珊, 沈振亚. Stanford A 型主动脉夹层相关基因KIF20A 的共表达网络构建及作用靶点分析[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 303-312.
[9] 孟煜凡, 李永政, 樊知遥, 展翰翔. 瘤内微生物在胰腺癌发病和演进中的作用机制及研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(04): 577-582.
[10] 赵泽云, 李建男, 王旻. 中性粒细胞胞外诱捕网在结直肠癌中的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 524-528.
[11] 王梦琪, 刘恒昌, 陈海鹏, 刘佳. 骶神经刺激治疗排便失禁的机制研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(05): 417-422.
[12] 陈利, 杨长青, 朱风尚. 重视炎症性肠病和代谢相关脂肪性肝病间的串话机制研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 385-389.
[13] 刘琦, 王守凯, 王帅, 苏雨晴, 马壮, 陈海军, 司丕蕾. 乳腺癌肿瘤内微生物组的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 841-845.
[14] 徐靖亭, 孔璐. PARP抑制剂治疗卵巢癌的耐药机制及应对策略[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 584-588.
[15] 曹亚丽, 高雨萌, 张英谦, 李博, 杜军保, 金红芳. 儿童坐位不耐受的临床进展[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 510-515.
阅读次数
全文


摘要