切换至 "中华医学电子期刊资源库"

中华心脏与心律电子杂志 ›› 2023, Vol. 11 ›› Issue (01) : 18 -23. doi: 10.3877/cma.j.issn.2095-6568.2023.01.004

人工智能 大数据

人工智能辅助心电图识别无冠心病人群的临床研究
郭少华1, 耿世佳2, 洪申达3, 穆冠宇1, 张一芝4, 杨磊5, 刘彤1, 陈康寅6,()   
  1. 1. 300211 天津,天津市心血管病离子与分子机能重点实验室 天津医科大学第二医院心脏科 天津心脏病学研究所
    2. 230088 合肥,安徽心之声医疗科技有限公司
    3. 100191 北京,北京大学健康医疗大数据国家研究院
    4. 361028 厦门,厦门长庚医院心脏内科
    5. 300170 天津,天津市第三中心医院心脏中心
    6. 300072 天津,天津大学精密仪器和光电子工程学院
  • 收稿日期:2023-01-31 出版日期:2023-03-25
  • 通信作者: 陈康寅
  • 基金资助:
    天津市科技局多元投入基金重点项目(21JCZDJC01080)

Use of an artificial intelligence-enabled electrocardiogram for screening people without coronary heart disease

Shaohua Guo1, Shijia Geng2, Shenda Hong3, Guanyu Mu1, Yizhi Zhang4, Lei Yang5, Tong Liu1, Kangyin Chen6,()   

  1. 1. Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin Institute of Cardiology, Tianjin 300211, China
    2. Heart Voice Medical Technology, Hefei 230088, China
    3. National Institute of Health and Medical Big Data, Peking University, Beijing 100191, China
    4. Xiamen Changgung Hospital, Department of Cardiology, Xiamen 361028, China
    5. Tianjin Third Central Hospital, Department of Cardiology, Tianjin 300170, China
    6. The School of Precision Instrument and Opto-electronic Engineering, Tianjin University, Tianjin 300072, China
  • Received:2023-01-31 Published:2023-03-25
  • Corresponding author: Kangyin Chen
引用本文:

郭少华, 耿世佳, 洪申达, 穆冠宇, 张一芝, 杨磊, 刘彤, 陈康寅. 人工智能辅助心电图识别无冠心病人群的临床研究[J]. 中华心脏与心律电子杂志, 2023, 11(01): 18-23.

Shaohua Guo, Shijia Geng, Shenda Hong, Guanyu Mu, Yizhi Zhang, Lei Yang, Tong Liu, Kangyin Chen. Use of an artificial intelligence-enabled electrocardiogram for screening people without coronary heart disease[J]. Chinese Journal of Heart and Heart Rhythm(Electronic Edition), 2023, 11(01): 18-23.

目的

探索应用人工智能辅助心电图识别拟诊冠心病患者中的无冠心病人群(冠状动脉狭窄程度<50%)。

方法

本研究是一项基于回顾性心电图数据建立预测无冠心病人群人工智能模型并加以验证的临床研究。入选天津医科大学第二医院、天津市第三中心医院和厦门长庚医院门急诊2020年1月至2022年12月期间的拟诊冠心病并于住院期间行冠状动脉造影检查的患者,基于标准12导联心电图建立心电图数据集。按照主要冠状动脉或其主要分支的狭窄程度是否<50%,将心电图标记为无冠心病组和阳性对照组。通过训练心电图建立深度神经网络模型,识别无冠心病人群。

结果

共纳入4 489例病历,其中4 187例用于模型构建,302例厦门长庚医院数据用于模型的外部验证。模型内部验证的接收者操作特征曲线下面积(AUC)为0.70,敏感性为0.701,特异性为0.630,F1评分为0.469。外部验证的AUC为0.55,敏感性为0.359,特异性为0.784,F1评分为0.373。

结论

基于心电图的人工智能模型能够识别拟诊冠心病患者中的无冠心病人群,具有一定的临床应用价值。

Objective

To explore the application of artificial intelligence-assisted electrocardiograms (ECG) to identify patients without coronary heart disease (coronary artery stenosis < 50%).

Methods

Patients with suspected coronary heart disease and who underwent coronary angiography during hospitalization were enrolled. The ECG data set was established based on standard 12-lead ECG. The ECG was labeled as a group without coronary disease and a control group according to whether the main coronary artery or its main branches were narrowed by less than 50% in diameter. A deep neural network model was established by training ECG to identify patients without coronary heart disease.

Results

A total of 4 489 ECG medical records were included, of which 4 187 were used for model construction and 302 were used for external verification of the model. The area under curve (AUC) value, sensitivity, and specificity of the model were 0.70, 0.701, 0.630, and 0.469 respectively. The AUC value of external validation was 0.55, sensitivity 0.359, specificity 0.784, and F1 score 0.373.

Conclusion

The artificial intelligence model based on ECG can identify patients without coronary heart disease in patients with suspected coronary heart disease, which has certain clinical application value.

图1 研究流程图
表1 4 489例纳入研究心电病历的性别年龄分布信息
图2 人工智能心电图模型的受试者工作曲线和混淆矩阵图(2A.内部验证受试者工作曲线特征;2B.内部验证混淆矩阵图;2C.外部验证受试者工作曲线特征;2D.外部验证混淆矩阵图)
表2 人工智能模型的性能
图3 根据年龄、性别的亚组分析森林图
[1]
Zhou M, Wang H, Zhu J, et al. Cause-specific mortality for 240 causes in China during 1990-2013: a systematic subnational analysis for the Global Burden of Disease Study 2013[J]. Lancet, 2016, 387(10015):251-272.
[2]
West R, Ellis G, Brooks N. Complications of diagnostic cardiac catheterisation: results from a confidential inquiry into cardiac catheter complications[J]. Heart, 2006, 92(6):810-814.
[3]
Scanlon PJ, Faxon DP, Audet AM, et al. ACC/AHA guidelines for coronary angiography. A report of the American College of Cardiology/American Heart Association Task Force on practice guidelines (Committee on Coronary Angiography). Developed in collaboration with the Society for Cardiac Angiography and Interventions[J]. J Am Coll Cardiol, 1999,33(6):1756-1824.
[4]
Patel MR, Peterson ED, Dai D, et al. Low diagnostic yield of elective coronary angiography[J]. N Engl J Med, 2010, 362(10):886-895.
[5]
杨晓帆, 宫剑滨, 江时森, 等. 临床拟诊冠心病冠状动脉造影阴性180例分析 [J] . 中国综合临床,2005,21( 02 ): 103-104..
[6]
Attia ZI, Friedman PA, Noseworthy PA, et al. Age and sex estimation using artificial intelligence from standard 12-lead ECGs[J]. Circ Arrhythm Electrophysiol, 2019, 12(9):e007284.
[7]
Attia ZI, Noseworthy PA, Lopez-Jimenez F, et al. An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction[J]. Lancet, 2019, 394(10201):861-867.
[8]
Attia ZI, Kapa S, Lopez-Jimenez F, et al. Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram[J]. Nat Med, 2019, 25(1):70-74.
[9]
McCarthy CP, Neumann JT, Michelhaugh SA, et al. Derivation and external validation of a high-sensitivity cardiac troponin-based proteomic model to predict the presence of obstructive coronary artery disease[J]. J Am Heart Assoc, 2020, 9(16):e017221.
[10]
Upton R, Mumith A, Beqiri A, et al. Automated echocardiographic detection of severe coronary artery disease using artificial intelligence[J]. JACC Cardiovasc Imaging, 2022, 15(5):715-727.
[11]
Leasure M, Jain U, Butchy A, et al. Deep learning algorithm Predicts angiographic coronary artery disease in stable patients using only a standard 12-lead electrocardiogram[J]. Can J Cardiol, 2021, 37(11):1715-1724.
[12]
Huang PS, Tseng YH, Tsai CF, et al. An artificial intelligence-enabled ECG algorithm for the prediction and localization of angiography-proven coronary artery disease[J]. Biomedicines, 2022, 10(2).
[13]
Lawton JS, Tamis-Holland JE, Bangalore S, et al. 2021 ACC/AHA/SCAI Guideline for coronary artery revascularization: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines[J]. J Am Coll Cardiol, 2022, 79(2):e21-e129.
[1] 张梅芳, 谭莹, 朱巧珍, 温昕, 袁鹰, 秦越, 郭洪波, 侯伶秀, 黄文兰, 彭桂艳, 李胜利. 早孕期胎儿头臀长正中矢状切面超声图像的人工智能质控研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 945-950.
[2] 唐玮, 何融泉, 黄素宁. 深度学习在乳腺癌影像诊疗和预后预测中的应用[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 323-328.
[3] 李锐颖, 危望, 王达志, 时志斌. 深度学习技术在膝关节疾病中的研究现状与展望[J]. 中华关节外科杂志(电子版), 2023, 17(05): 722-725.
[4] 范帅华, 郭伟, 郭军. 基于机器学习的决策树算法在血流感染预后预测中应用现状及展望[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 289-293.
[5] 张辉, 蔡敏, 黄湘雅. 数字化技术和人工智能在上颌窦底提升术的临床应用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(04): 244-252.
[6] 李晓阳, 刘柏隆, 周祥福. 大数据及人工智能对女性盆底功能障碍性疾病的诊断及风险预测[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 549-552.
[7] 胡博文, 戴英波. 泌尿外科机器人手术新趋势[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 418-421.
[8] 邢晓伟, 刘雨辰, 赵冰, 王明刚. 基于术前腹部CT的卷积神经网络对腹壁切口疝术后复发预测价值[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 677-681.
[9] 邢晓伟, 刘雨辰, 王明刚. 人工智能技术在疝和腹壁外科领域的应用及展望[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(04): 390-393.
[10] 雷漫诗, 邓锶锶, 汪昕蓉, 黄锦彬, 向青, 熊安妮, 孟占鳌. 人工智能辅助压缩感知技术在上腹部T2WI压脂序列中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 551-556.
[11] 韩冰, 顾劲扬. 深度学习神经网络在肝癌诊疗中的研究及应用前景[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 480-485.
[12] 王晓东, 汪恺, 葛昭, 丁忠祥, 徐骁. 计算机视觉技术在肝癌肝移植疗效提升中的研究进展[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 361-366.
[13] 李京珂, 张妍春, 武佳懿, 任秀瑜. 深度学习在糖尿病视网膜病变筛查、评级及管理中的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 241-246.
[14] 刘飞, 王影新, 马骍, 辛灵, 程元甲, 刘倩, 王悦, 张军军. 不同介质腔内心电图定位技术在乳腺癌上臂输液港植入术中应用的随机对照研究[J]. 中华临床医师杂志(电子版), 2023, 17(07): 760-764.
[15] 胡平, 鄢腾峰, 周海柱, 祝新根. 人工智能在非增强CT图像中颅内出血早期检出和血肿分割的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 410-416.
阅读次数
全文


摘要