切换至 "中华医学电子期刊资源库"

中华心脏与心律电子杂志 ›› 2023, Vol. 11 ›› Issue (01) : 18 -23. doi: 10.3877/cma.j.issn.2095-6568.2023.01.004

人工智能 大数据

人工智能辅助心电图识别无冠心病人群的临床研究
郭少华1, 耿世佳2, 洪申达3, 穆冠宇1, 张一芝4, 杨磊5, 刘彤1, 陈康寅6,()   
  1. 1. 300211 天津,天津市心血管病离子与分子机能重点实验室 天津医科大学第二医院心脏科 天津心脏病学研究所
    2. 230088 合肥,安徽心之声医疗科技有限公司
    3. 100191 北京,北京大学健康医疗大数据国家研究院
    4. 361028 厦门,厦门长庚医院心脏内科
    5. 300170 天津,天津市第三中心医院心脏中心
    6. 300072 天津,天津大学精密仪器和光电子工程学院
  • 收稿日期:2023-01-31 出版日期:2023-03-25
  • 通信作者: 陈康寅
  • 基金资助:
    天津市科技局多元投入基金重点项目(21JCZDJC01080)

Use of an artificial intelligence-enabled electrocardiogram for screening people without coronary heart disease

Shaohua Guo1, Shijia Geng2, Shenda Hong3, Guanyu Mu1, Yizhi Zhang4, Lei Yang5, Tong Liu1, Kangyin Chen6,()   

  1. 1. Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin Institute of Cardiology, Tianjin 300211, China
    2. Heart Voice Medical Technology, Hefei 230088, China
    3. National Institute of Health and Medical Big Data, Peking University, Beijing 100191, China
    4. Xiamen Changgung Hospital, Department of Cardiology, Xiamen 361028, China
    5. Tianjin Third Central Hospital, Department of Cardiology, Tianjin 300170, China
    6. The School of Precision Instrument and Opto-electronic Engineering, Tianjin University, Tianjin 300072, China
  • Received:2023-01-31 Published:2023-03-25
  • Corresponding author: Kangyin Chen
引用本文:

郭少华, 耿世佳, 洪申达, 穆冠宇, 张一芝, 杨磊, 刘彤, 陈康寅. 人工智能辅助心电图识别无冠心病人群的临床研究[J/OL]. 中华心脏与心律电子杂志, 2023, 11(01): 18-23.

Shaohua Guo, Shijia Geng, Shenda Hong, Guanyu Mu, Yizhi Zhang, Lei Yang, Tong Liu, Kangyin Chen. Use of an artificial intelligence-enabled electrocardiogram for screening people without coronary heart disease[J/OL]. Chinese Journal of Heart and Heart Rhythm(Electronic Edition), 2023, 11(01): 18-23.

目的

探索应用人工智能辅助心电图识别拟诊冠心病患者中的无冠心病人群(冠状动脉狭窄程度<50%)。

方法

本研究是一项基于回顾性心电图数据建立预测无冠心病人群人工智能模型并加以验证的临床研究。入选天津医科大学第二医院、天津市第三中心医院和厦门长庚医院门急诊2020年1月至2022年12月期间的拟诊冠心病并于住院期间行冠状动脉造影检查的患者,基于标准12导联心电图建立心电图数据集。按照主要冠状动脉或其主要分支的狭窄程度是否<50%,将心电图标记为无冠心病组和阳性对照组。通过训练心电图建立深度神经网络模型,识别无冠心病人群。

结果

共纳入4 489例病历,其中4 187例用于模型构建,302例厦门长庚医院数据用于模型的外部验证。模型内部验证的接收者操作特征曲线下面积(AUC)为0.70,敏感性为0.701,特异性为0.630,F1评分为0.469。外部验证的AUC为0.55,敏感性为0.359,特异性为0.784,F1评分为0.373。

结论

基于心电图的人工智能模型能够识别拟诊冠心病患者中的无冠心病人群,具有一定的临床应用价值。

Objective

To explore the application of artificial intelligence-assisted electrocardiograms (ECG) to identify patients without coronary heart disease (coronary artery stenosis < 50%).

Methods

Patients with suspected coronary heart disease and who underwent coronary angiography during hospitalization were enrolled. The ECG data set was established based on standard 12-lead ECG. The ECG was labeled as a group without coronary disease and a control group according to whether the main coronary artery or its main branches were narrowed by less than 50% in diameter. A deep neural network model was established by training ECG to identify patients without coronary heart disease.

Results

A total of 4 489 ECG medical records were included, of which 4 187 were used for model construction and 302 were used for external verification of the model. The area under curve (AUC) value, sensitivity, and specificity of the model were 0.70, 0.701, 0.630, and 0.469 respectively. The AUC value of external validation was 0.55, sensitivity 0.359, specificity 0.784, and F1 score 0.373.

Conclusion

The artificial intelligence model based on ECG can identify patients without coronary heart disease in patients with suspected coronary heart disease, which has certain clinical application value.

图1 研究流程图
表1 4 489例纳入研究心电病历的性别年龄分布信息
图2 人工智能心电图模型的受试者工作曲线和混淆矩阵图(2A.内部验证受试者工作曲线特征;2B.内部验证混淆矩阵图;2C.外部验证受试者工作曲线特征;2D.外部验证混淆矩阵图)
表2 人工智能模型的性能
图3 根据年龄、性别的亚组分析森林图
[1]
Zhou M, Wang H, Zhu J, et al. Cause-specific mortality for 240 causes in China during 1990-2013: a systematic subnational analysis for the Global Burden of Disease Study 2013[J]. Lancet, 2016, 387(10015):251-272.
[2]
West R, Ellis G, Brooks N. Complications of diagnostic cardiac catheterisation: results from a confidential inquiry into cardiac catheter complications[J]. Heart, 2006, 92(6):810-814.
[3]
Scanlon PJ, Faxon DP, Audet AM, et al. ACC/AHA guidelines for coronary angiography. A report of the American College of Cardiology/American Heart Association Task Force on practice guidelines (Committee on Coronary Angiography). Developed in collaboration with the Society for Cardiac Angiography and Interventions[J]. J Am Coll Cardiol, 1999,33(6):1756-1824.
[4]
Patel MR, Peterson ED, Dai D, et al. Low diagnostic yield of elective coronary angiography[J]. N Engl J Med, 2010, 362(10):886-895.
[5]
杨晓帆, 宫剑滨, 江时森, 等. 临床拟诊冠心病冠状动脉造影阴性180例分析 [J] . 中国综合临床,2005,21( 02 ): 103-104..
[6]
Attia ZI, Friedman PA, Noseworthy PA, et al. Age and sex estimation using artificial intelligence from standard 12-lead ECGs[J]. Circ Arrhythm Electrophysiol, 2019, 12(9):e007284.
[7]
Attia ZI, Noseworthy PA, Lopez-Jimenez F, et al. An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction[J]. Lancet, 2019, 394(10201):861-867.
[8]
Attia ZI, Kapa S, Lopez-Jimenez F, et al. Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram[J]. Nat Med, 2019, 25(1):70-74.
[9]
McCarthy CP, Neumann JT, Michelhaugh SA, et al. Derivation and external validation of a high-sensitivity cardiac troponin-based proteomic model to predict the presence of obstructive coronary artery disease[J]. J Am Heart Assoc, 2020, 9(16):e017221.
[10]
Upton R, Mumith A, Beqiri A, et al. Automated echocardiographic detection of severe coronary artery disease using artificial intelligence[J]. JACC Cardiovasc Imaging, 2022, 15(5):715-727.
[11]
Leasure M, Jain U, Butchy A, et al. Deep learning algorithm Predicts angiographic coronary artery disease in stable patients using only a standard 12-lead electrocardiogram[J]. Can J Cardiol, 2021, 37(11):1715-1724.
[12]
Huang PS, Tseng YH, Tsai CF, et al. An artificial intelligence-enabled ECG algorithm for the prediction and localization of angiography-proven coronary artery disease[J]. Biomedicines, 2022, 10(2).
[13]
Lawton JS, Tamis-Holland JE, Bangalore S, et al. 2021 ACC/AHA/SCAI Guideline for coronary artery revascularization: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines[J]. J Am Coll Cardiol, 2022, 79(2):e21-e129.
[1] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[2] 王岚, 徐斌胜, 谢乐. 肥厚型心肌病的经胸超声心动图诊断与心电图表现特征[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 593-596.
[3] 杨敬武, 周美君, 陈雨凡, 李素淑, 何燕妮, 崔楠, 刘红梅. 人工智能超声结合品管圈活动对低年资超声医师甲状腺结节风险评估能力的作用[J/OL]. 中华医学超声杂志(电子版), 2024, 21(05): 522-526.
[4] 明昊, 肖迎聪, 巨艳, 宋宏萍. 乳腺癌风险预测模型的研究现状[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 287-291.
[5] 张嘉炜, 王瑞, 张克诚, 易磊, 周增丁. 烧烫伤创面深度智能检测模型P-YOLO的建立及测试效果[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 379-385.
[6] 叶莉, 杜宇. 深度学习在牙髓根尖周病临床诊疗中的应用[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(06): 351-356.
[7] 熊鹰, 林敬莱, 白奇, 郭剑明, 王烁. 肾癌自动化病理诊断:AI离临床还有多远?[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 535-540.
[8] 李伟, 宋子健, 赖衍成, 周睿, 吴涵, 邓龙昕, 陈锐. 人工智能应用于前列腺癌患者预后预测的研究现状及展望[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 541-546.
[9] 黄俊龙, 李文双, 李晓阳, 刘柏隆, 陈逸龙, 丘惠平, 周祥福. 基于盆底彩超的人工智能模型在女性压力性尿失禁分度诊断中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 597-605.
[10] 莫淇舟, 苏劲, 黄健, 李健维, 李思宁, 柳建军. 智能控压输尿管软镜碎石吸引取石术在直径10~25 mm上尿路结石中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 497-502.
[11] 李义亮, 苏拉依曼·牙库甫, 麦麦提艾力·麦麦提明, 克力木·阿不都热依木. 机器人与腹腔镜食管裂孔疝修补术联合Nissen 胃底折叠术短期疗效分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(05): 512-517.
[12] 赵毅, 李昶田, 唐文博, 白雪婷, 刘荣. 腹腔镜术中超声主胰管自动识别模型的临床应用[J/OL]. 中华腔镜外科杂志(电子版), 2024, 17(05): 290-294.
[13] 崔健, 夏青, 林云, 李光玲, 李心娜, 王位. 血小板与淋巴细胞比值、免疫球蛋白、心肌酶谱及心电图对中老年肝硬化患者病情及预后的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 400-406.
[14] 孙铭远, 褚恒, 徐海滨, 张哲. 人工智能应用于多发性肺结节诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 785-790.
[15] 张家珺, 张海涛, 苏菲菲. 径向壁应变分析在冠心病诊疗中的应用[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 687-691.
阅读次数
全文


摘要