[1] |
Groenewegen A, Rutten FH, Mosterd A, et al. Epidemiology of heart failure[J]. Eur J Heart Fail, 2020, 22(8): 1342–1356.
|
[2] |
Hao G, Wang X, Chen Z, et al. Prevalence of heart failure and left ventricular dysfunction in China: the China Hypertension Survey, 2012-2015[J]. Eur J Heart Fail, 2019, 21(11):1329-1337.
|
[3] |
Heidenreich PA, Bozkurt B, Aguilar D, et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure: A report of the American College of Cardiology/American Heart Association Joint Committee on clinical practice guidelines[J]. Circulation, 2022, 145(18):e895-e1032.
|
[4] |
Task A, Members F, Mcdonagh TA, et al. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure[J]. Eur Heart J. 2021; 42(36):3599-3726.
|
[5] |
Wang Z, Wu Y, Zhang J. Cardiac resynchronization therapy in heart failure patients: tough road but clear future[J]. Heart Fail Rev, 2021, 26(3):735-745.
|
[6] |
Rao IV, Burkhoff D. Cardiac contractility modulation for the treatment of moderate to severe HF[J]. Expert Rev Med Devices, 2021, 18(1):15-21.
|
[7] |
Imai M, Rastogi S, Gupta RC, et al. Therapy with cardiac contractility modulation electrical signals improves left ventricular function and remodeling in dogs with chronic heart failure[J]. J Am Coll Cardiol, 2007, 49(21):2120-2128.
|
[8] |
Butter C, Rastogi S, Minden HH, et al. Cardiac contractility modulation electrical signals improve myocardial gene expression in patients with heart failure[J]. J Am Coll Cardiol, 2008, 51(18):1784-1789.
|
[9] |
Butter C, Wellnhofer E, Schlegl M, et al. Enhanced inotropic state of the failing left ventricle by cardiac contractility modulation electrical signals is not associated with increased myocardial oxygen consumption[J]. J Card Fail, 2007, 13(2):137-142.
|
[10] |
Borggrefe MM, Lawo T, Butter C, et al. Randomized, double blind study of non-excitatory, cardiac contractility modulation electrical impulses for symptomatic heart failure[J]. Eur Heart J, 2008, 29(8):1019-1028.
|
[11] |
Kadish A, Nademanee K, Volosin K, et al. A randomized controlled trial evaluating the safety and efficacy of cardiac contractility modulation in advanced heart failure[J]. Am Heart J, 2011, 161(2):329-337.
|
[12] |
Abraham WT, Kuck KH, Goldsmith RL, et al. A randomized controlled trial to evaluate the safety and efficacy of cardiac contractility modulation[J]. JACC Heart Fail, 2018, 6(10):874-883.
|
[13] |
Wiegn P, Chan R, Jost C, et al. Safety, Performance, and efficacy of cardiac contractility modulation delivered by the 2-lead optimizer smart system: The FIX-HF-5C2 study[J]. Circ Heart Fail, 2020, 13(4):e006512.
|
[14] |
Anker SD, Borggrefe M, Neuser H, et al. Cardiac contractility modulation improves long-term survival and hospitalizations in heart failure with reduced ejection fraction[J]. Eur J Heart Fail, 2019, 21(9):1103-1113.
|
[15] |
Kuschyk J, Falk P, Demming T, et al. Long-term clinical experience with cardiac contractility modulation therapy delivered by the Optimizer Smart system[J]. Eur J Heart Fail, 2021, 23(7):1160-1169.
|
[16] |
Feaster TK, Casciola M, Narkar A, et al. Acute effects of cardiac contractility modulation on human induced pluripotent stem cell-derived cardiomyocytes[J]. Physiol Rep, 2021, 9(21):e15085.
|
[17] |
Abraham WT, Lindenfeld J, Reddy VY, et al. A randomized controlled trial to evaluate the safety and efficacy of cardiac contractility modulation in patients with moderately reduced left ventricular ejection fraction and a narrow QRS duration: study rationale and design[J]. J Card Fail, 2015, 21(1):16-23.
|
[18] |
Tschöpe C, Van Linthout S, Spillmann F, et al. Cardiac contractility modulation signals improve exercise intolerance and maladaptive regulation of cardiac key proteins for systolic and diastolic function in HFpEF[J]. Int J Cardiol, 2016, 203:1061-1066.
|