[1] |
Deo R, Albert CM. Epidemiology and genetics of sudden cardiac death[J]. Circulation, 2012, 125(4):620-637.
|
[2] |
Xu F, Zhang Y, Chen Y. Cardiopulmonary Resuscitation Training in China: Current Situation and Future Develop‐ment[J]. JAMA Cardiol, 2017, 2(5):469-470.
|
[3] |
Al-Khatib SM, Stevenson WG, Ackerman MJ, et al. 2017 AHA/ACC/HRS Guideline for management of patients with ventricular arrhythmias and the prevention of sud‐den cardiac death: executive summary: a report of the American College of Cardiology/American Heart Associa‐tion Task Force on Clinical Practice Guidelines and the Heart Rhythm Society[J]. J Am Coll Cardiol, 2018, 72(14):1677-1749.
|
[4] |
Moss AJ, Zareba W, Hall WJ, et al. Prophylactic implanta‐tion of a defibrillator in patients with myocardial infarc‐tion and reduced ejection fraction[J]. N Engl J Med, 2002,346(12):877-883.
|
[5] |
Fishman GI, Chugh SS, Dimarco JP, et al. Sudden cardiac death prediction and prevention: report from a National Heart, Lung, and Blood Institute and Heart Rhythm Soci‐ety Workshop[J]. Circulation, 2010, 122(22):2335-2348.
|
[6] |
中华医学会心电生理和起搏分会, 中国医师协会心律学专业委员会. 2020室性心律失常中国专家共识(2016共识升级版)[J]. 中华心律失常学杂志, 2020, 24(3):188-258.
|
[7] |
Kayvanpour E, Sammani A, Sedaghat-Hamedani F, et al. A novel risk model for predicting potentially life-threaten‐ing arrhythmias in non-ischemic dilated cardiomyopathy(DCM-SVA risk)[J]. Int J Cardiol, 2021, 339:75-82.
|
[8] |
O'Mahony C, Jichi F, Pavlou M, et al. A novel clinical risk prediction model for sudden cardiac death in hypertro‐phic cardiomyopathy (HCM risk-SCD) [J]. Eur Heart J,2014, 35(30):2010-2020.
|
[9] |
Bhattacharya M, Lu DY, Kudchadkar SM, et al. Identifying ventricular arrhythmias and their predictors by apply-ing machine learning methods to electronic health re-cords in with hypertrophic cardiomyopathy (HCM-VAr-Risk Model)[J]. Am J Cardiol, 2019, 123(10):1681-1689.
|
[10] |
Hong S, Lee S, Lee J, et al. Prediction of cardiac arrest in the emergency department based on machine learning and sequential characteristics: model development and retrospective clinical validation study[J]. JMIR Med In‐form, 2020, 8(8):e15932.
|
[11] |
Atallah J, Gonzalez Corcia MC, Walsh EP. Ventricular ar‐rhythmia and life-threatening events in patients with re‐paired tetralogy of Fallot[J]. Am J Cardiol, 2020, 132:126-132.
|
[12] |
Lane CM, Bos JM, Rohatgi RK, et al. Beyond the length and look of repolarization: defining the non-QTc electrocardio‐graphic profiles of patients with congenital long QT syn‐drome[J]. Heart Rhythm, 2018, 15(9):1413-1419.
|
[13] |
Giudicessi JR, Schram M, Bos JM, et al. Artificial intelli‐gence-enabled assessment of the heart rate corrected QT interval using a mobile electrocardiogram device[J]. Circu‐lation, 2021, 143(13):1274-1286.
|
[14] |
Bos JM, Attia ZI, Albert DE, et al. Use of artificial intelli‐gence and deep neural networks in evaluation of patients with electrocardiographically concealed long QT syn‐drome from the surface 12-lead electrocardiogram[J]. JA‐MA Cardiol, 2021, 6(5):532-538.
|
[15] |
Prifti E, Fall A, Davogustto G, et al. Deep learning analysis of electrocardiogram for risk prediction of drug-induced arrhythmias and diagnosis of long QT syndrome[J]. Eur Heart J, 2021, 42(38):3948-3961.
|
[16] |
Shakibfar S, Krause O, Lund-Andersen C, et al. Predicting electrical storms by remote monitoring of implantable cardioverter-defibrillator patients using machine learning[J]. Europace, 2019, 21(2):268-274.
|
[17] |
Rogers AJ, Selvalingam A, Alhusseini MI, et al. Machine Learned Cellular Phenotypes in Cardiomyopathy Predict Sudden Death[J]. Circ Res, 2021, 128(2):172-184.
|
[18] |
Okada DR, Miller J, Chrispin J, et al. Substrate spatial com‐plexity analysis for the prediction of ventricular arrhyth‐mias in patients with ischemic cardiomyopathy[J]. Circ Ar‐rhythm Electrophysiol, 2020, 13(4):e007975.
|
[19] |
Popescu DM, Shade JK, Lai C, et al. Arrhythmic sudden death survival prediction using deep learning analysis of scarring in the heart[J]. Nat Cardiovasc Res, 2022, 1(4):334-343.
|
[20] |
Shade JK, Prakosa A, Popescu DM, et al. Predicting risk of sudden cardiac death in patients with cardiac sarcoidosis using multimodality imaging and personalized heart mod‐eling in a multivariable classifier[J]. Sci Adv, 2021, 7(31):eabi8020.
|