[1] |
Su Z, Zou Z, Hay SI, et al. Global, regional, and national time trends in mortality for congenital heart disease,1990-2019: an age-period-cohort analysis for the Global Burden of Disease 2019 study[J]. EClinicalMedicine, 2022,43:101249.
|
[2] |
Cassady SJ, Ramani GV. Right heart failure in pulmonary hypertension[J]. Cardiol Clin, 2020, 38(2):243-255.
|
[3] |
Campo A, Mathai SC, Le Pavec J, et al. Outcomes of hospi‐talisation for right heart failure in pulmonary arterial hy‐pertension[J]. Eur Respir J, 2011, 38(2):359-67.
|
[4] |
van de Veerdonk MC, Kind T, Marcus JT, et al. Progressive right ventricular dysfunction in patients with pulmonary arterial hypertension responding to therapy[J]. J Am Coll Cardiol, 2011, 58(24):2511-2519.
|
[5] |
Oka T, Komuro I. Molecular mechanisms underlying the transition of cardiac hypertrophy to heart failure[J]. Circ J,2008,72 Suppl A:A13-A16.
|
[6] |
Reddy S, Bernstein D. Molecular mechanisms of right ven‐tricular failure[J]. Circulation, 2015, 132(18):1734-1742.
|
[7] |
Bowen ME, Selzman CH, McKellar SH. Right ventricular in‐volution: big changes in small hearts[J]. J Surg Res, 2019,243:255-264.
|
[8] |
Lowes BD, Minobe W, Abraham WT, et al. Changes in gene expression in the intact human heart. downregulation of alpha-myosin heavy chain in hypertrophied, failing ven‐tricular myocardium[J]. J Clin Invest, 1997, 100(9):2315-2324.
|
[9] |
Chaponnier C, Gabbiani G. Pathological situations charac‐terized by altered actin isoform expression[J]. J Pathol,2004, 204(4):386-395.
|
[10] |
Janicki JS, Brower GL, Gardner JD, et al. Cardiac mast cell regulation of matrix metalloproteinase-related ventricu‐lar remodeling in chronic pressure or volume overload[J].Cardiovasc Res, 2006, 69(3):657-665.
|
[11] |
Soonpaa MH, Field LJ. Survey of studies examining mam‐malian cardiomyocyte DNA synthesis[J]. Circ Res, 1998,83(1):15-26.
|
[12] |
Hein S, Arnon E, Kostin S, et al. Progression from compen‐sated hypertrophy to failure in the pressure-overloaded human heart: structural deterioration and compensatory mechanisms[J]. Circulation, 2003, 107(7):984-991.
|
[13] |
Foo RS, Mani K, Kitsis RN. Death begets failure in the heart[J]. J Clin Invest, 2005, 115(3):565-571.
|
[14] |
Anversa P, Kajstura J, Leri A, et al. Life and death of cardi‐ac stem cells: a paradigm shift in cardiac biology[J]. Circu‐lation, 2006, 113(11):1451-1463.
|
[15] |
Andersen S, Nielsen-Kudsk JE, Vonk Noordegraaf A, et al.Right Ventricular Fibrosis[J]. Circulation, 2019, 139(2):269-285.
|
[16] |
Meagher PB, Lee XA, Lee J, et al. Cardiac fibrosis: key role of integrins in cardiac homeostasis and remodeling[J].Cells, 2021, 10(4):770.
|
[17] |
Ciszewski WM, Wawro ME, Sacewicz-Hofman I, et al. Cyto‐skeleton reorganization in EndMT-the role in cancer and fibrotic diseases[J]. Int J Mol Sci, 2021, 22(21):11607.
|
[18] |
Ma J, Sanchez-Duffhues G, Goumans MJ, et al. TGF-β-in‐duced endothelial to mesenchymal transition in disease and tissue engineering[J]. Front Cell Dev Biol, 2020, 8:260.
|
[19] |
Hudlicka O, Brown M, Egginton S. Angiogenesis in skeletal and cardiac muscle[J]. Physiol Rev, 1992, 72(2):369-417.
|
[20] |
Shiojima I, Sato K, Izumiya Y, et al. Disruption of coordi‐nated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure[J]. J Clin Invest, 2005,115(8):2108-2118.
|
[21] |
Sano M, Minamino T, Toko H, et al. p53-induced inhibition of Hif-1 causes cardiac dysfunction during pressure over‐load[J]. Nature, 2007, 446(7134):444-448.
|
[22] |
Camici PG, Tschöpe C, Di Carli MF, et al. Coronary micro‐vascular dysfunction in hypertrophy and heart failure[J].Cardiovasc Res, 2020, 116(4):806-816.
|
[23] |
Chen J, Yaniz-Galende E, Kagan HJ, et al. Abnormalities of capillary microarchitecture in a rat model of coronary ischemic congestive heart failure[J]. Am J Physiol Heart Circ Physiol, 2015, 308(8):H830-H840.
|
[24] |
Red-Horse K, Ueno H, Weissman IL, et al. Coronary arter‐ies form by developmental reprogramming of venous cells[J]. Nature, 2010, 464(7288):549-553.
|
[25] |
Wu B, Zhang Z, Lui W, et al. Endocardial cells form the cor‐onary arteries by angiogenesis through myocardial-endo‐cardial VEGF signaling[J]. Cell, 2012, 151(5):1083-1096.
|
[26] |
Ogawa S, Oku A, Sawano A, et al. A novel type of vascular endothelial growth factor, VEGF-E (NZ-7 VEGF), preferen‐tially utilizes KDR/Flk-1 receptor and carries a potent mi‐totic activity without heparin-binding domain[J]. J Biol Chem, 1998, 273(47):31273-31282.
|
[27] |
Adams RH, Alitalo K. Molecular regulation of angiogene‐sis and lymphangiogenesis[J]. Nat Rev Mol Cell Biol, 2007,8(6):464-478.
|
[28] |
Carmeliet P, Ferreira V, Breier G, et al. Abnormal blood vessel development and lethality in embryos lacking a sin‐gle VEGF allele[J]. Nature, 1996, 380(6573):435-439.
|
[29] |
Carmeliet P. Angiogenesis in health and disease[J]. Nature medicine, 2003, 9(6): 653-660.
|
[30] |
Blanco R, Gerhardt H. VEGF and Notch in tip and stalk cell selection[J]. Cold Spring Harb Perspect Med, 2013, 3(1):a006569.
|
[31] |
Bittel DC, Kibiryeva N, Marshall JA, et al. MicroRNA-421 dysregulation is associated with tetralogy of Fallot[J].Cells, 2014, 3(3):713-723.
|
[32] |
Talman V, Kivelä R. Cardiomyocyte-endothelial cell inter‐actions in cardiac remodeling and regeneration[J]. Front Cardiovasc Med, 2018, 5:101.
|
[33] |
Reuter MS, Jobling R, Chaturvedi RR, et al. Haploinsuffi‐ciency of vascular endothelial growth factor related sig‐naling genes is associated with tetralogy of Fallot[J]. Gen‐et Med, 2019, 21(4):1001-1007.
|
[34] |
Ylä-Herttuala S, Rissanen TT, Vajanto I, et al. Vascular en‐dothelial growth factors: biology and current status of clinical applications in cardiovascular medicine[J]. J Am Coll Cardiol, 2007, 49(10):1015-1026.
|
[35] |
Poltorak Z, Cohen T, Neufeld G. The VEGF splice variants:properties, receptors, and usage for the treatment of isch‐emic diseases[J]. Herz, 2000, 25(2):126-129.
|
[36] |
Ferrara N, Davis-Smyth T. The biology of vascular endo‐thelial growth factor[J]. Endocr Rev, 1997, 18(1):4-25.
|
[37] |
Pearlman JD, Hibberd MG, Chuang ML, et al. Magnetic res‐onance mapping demonstrates benefits of VEGF-induced myocardial angiogenesis[J]. Nat Med, 1995, 1(10):1085-1089.
|
[38] |
Forsythe JA, Jiang BH, Iyer NV, et al. Activation of vascular endothelial growth factor gene transcription by hypox‐ia-inducible factor 1[J]. Mol Cell Biol, 1996, 16(9):4604-4613.
|
[39] |
Tao Z, Chen B, Tan X, et al. Coexpression of VEGF and an‐giopoietin-1 promotes angiogenesis and cardiomyocyte proliferation reduces apoptosis in porcine myocardial in‐farction (MI) heart[J]. Proc Natl Acad Sci U S A, 2011,108(5):2064-2069.
|
[40] |
Dougher M, Terman BI. Autophosphorylation of KDR in the kinase domain is required for maximal VEGF-stimulat‐ed kinase activity and receptor internalization[J]. Onco‐gene, 1999, 18(8):1619-1627.
|
[41] |
Xia P, Aiello LP, Ishii H, et al. Characterization of vascular endothelial growth factor's effect on the activation of pro‐tein kinase C, its isoforms, and endothelial cell growth[J].J Clin Invest, 1996, 98(9):2018-2026.
|
[42] |
Matsumoto T, Bohman S, Dixelius J, et al. VEGF receptor-2 Y951 signaling and a role for the adapter molecule TSAd in tumor angiogenesis[J]. EMBO J, 2005, 24(13):2342-2353.
|
[43] |
Tang JM, Wang JN, Zhang L, et al. VEGF/SDF-1 promotes cardiac stem cell mobilization and myocardial repair in the infarcted heart[J]. Cardiovasc Res, 2011, 91(3):402-411.
|
[44] |
Gerber HP, McMurtrey A, Kowalski J, et al. Vascular endo‐thelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3'-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activa‐tion[J]. J Biol Chem, 1998, 273(46):30336-30343.
|
[45] |
Gavard J, Gutkind JS. VEGF controls endothelial-cell per‐meability by promoting the beta-arrestin-dependent en‐docytosis of VE-cadherin[J]. Nat Cell Biol, 2006, 8(11):1223-1234.
|
[46] |
Potente M, Carmeliet P. The link between angiogenesis and endothelial metabolism[J]. Annu Rev Physiol, 2017,79:43-66.
|
[47] |
Taylor J, Fischer A. Endothelial cells dictate cardiac fuel source[J]. Aging (Albany NY), 2019, 11(4):1083-1084.
|
[48] |
Vance KW, Ponting CP. Transcriptional regulatory func‐tions of nuclear long noncoding RNAs[J]. Trends Genet,2014, 30(8):348-355.
|
[49] |
Omura J, Habbout K, Shimauchi T, et al. Identification of long noncoding RNA H19 as a new biomarker and thera‐peutic target in right ventricular failure in pulmonary ar‐terial hypertension[J]. Circulation, 2020, 142(15):1464-1484.
|
[50] |
Zhang X, Gao Y, Zhang X, et al. FGD5-AS1 is a hub lncRNA ceRNA in hearts with tetralogy of Fallot which regulates congenital heart hisease genes transcriptionally and epi‐genetically[J]. Front Cell Dev Biol, 2021, 9:630634.
|
[51] |
Wang K, Zhou LY, Wang JX, et al. E2F1-dependent miR-421 regulates mitochondrial fragmentation and myo‐cardial infarction by targeting Pink1[J]. Nat Commun,2015, 6:7619.
|
[52] |
Fish JE, Santoro MM, Morton SU, et al. miR-126 regulates angiogenic signaling and vascular integrity[J]. Dev Cell,2008, 15(2):272-284.
|
[53] |
Kurogane Y, Miyata M, Kubo Y, et al. FGD5 mediates proan‐giogenic action of vascular endothelial growth factor in human vascular endothelial cells[J]. Arterioscler Thromb Vasc Biol, 2012, 32(4):988-996.
|
[54] |
Gillooly DJ, Simonsen A, Stenmark H. Cellular functions of phosphatidylinositol 3-phosphate and FYVE domain pro‐teins[J]. Biochem J, 2001, 355(Pt 2):249-258.
|
[55] |
Nakhaei-Nejad M, Haddad G, Zhang QX, et al. Facio-genital dysplasia-5 regulates matrix adhesion and survival of hu‐man endothelial cells[J]. Arterioscler Thromb Vasc Biol,2012, 32(11):2694-2701.
|
[56] |
Gui H, Tang W, Francke S, et al. Common variants on FGD5 increase hazard of mortality or rehospitalization in pa‐tients with heart failure from the ASCEND-HF trial[J]. Circ Heart Fail, 2023, 16(9):e010438.
|
[57] |
李成鹏,祝炜,段刚峰. 通阳益气法对急性心肌梗死大鼠心肌缺血的保护作用及VEGF、bFGF 表达的影响[J]. 四川中医, 2023, 41(10):58-63.
|
[58] |
王青, 万继锋, 刘长春, 等. 丹红注射液辅助治疗急性脑梗死对患者血清VEGF、MMP-9、hs-CRP及凝血功能的影响[J]. 现代中西医结合杂志, 2021, 30(19):2130-2133.
|
[59] |
Chen P, Liu J, Ruan H, et al. Protective effects of Salidro‐side on cardiac function in mice with myocardial infarc‐tion[J]. Sci Rep, 2019, 9(1):18127.
|
[60] |
Zhang H, Wu J, Wu J, et al. Exosome-mediated targeted de‐livery of miR-210 for angiogenic therapy after cerebral ischemia in mice[J]. J Nanobiotechnology, 2019, 17(1):29.
|
[61] |
Chen J, Cao W, Asare PF, et al. Amelioration of cardiac dys‐function and ventricular remodeling after myocardial in‐farction by danhong injection are critically contributed by anti-TGF-β-mediated fibrosis and angiogenesis mecha‐nisms[J]. J Ethnopharmacol, 2016, 194:559-570.
|