切换至 "中华医学电子期刊资源库"

中华心脏与心律电子杂志 ›› 2022, Vol. 10 ›› Issue (04) : 231 -237. doi: 10.3877/cma.j.issn.2095-6568.2022.04.008

所属专题: 总编推荐

心房颤动

心房颤动合并卒中患者的左心房功能与左心房低电压区的相关性研究
吴婷婷1, 吴楠2, 王可欣1, 居维竹1, 陈明龙1, 王子盾1,()   
  1. 1. 210029 南京,南京医科大学第一附属医院(江苏省人民医院)心血管内科
    2. 215000 南京,南京医科大学姑苏学院
  • 收稿日期:2022-10-25 出版日期:2022-12-25
  • 通信作者: 王子盾

Correlation between left atrial function and the left atrial low voltage zones in patients with atrial fibrillation and stroke

Tingting Wu1, Nan Wu2, Kexin Wang1, Weizhu Ju1, Minglong Chen1, Zidun Wang1,()   

  1. 1. Department of Cardiology, The First Affiliated Hospital with Nanjing Medical University (Jiangsu Province Hospital), Nanjing 210029, China
    2. Gusu School, Nanjing Medical University, Suzhou 215000, China
  • Received:2022-10-25 Published:2022-12-25
  • Corresponding author: Zidun Wang
引用本文:

吴婷婷, 吴楠, 王可欣, 居维竹, 陈明龙, 王子盾. 心房颤动合并卒中患者的左心房功能与左心房低电压区的相关性研究[J]. 中华心脏与心律电子杂志, 2022, 10(04): 231-237.

Tingting Wu, Nan Wu, Kexin Wang, Weizhu Ju, Minglong Chen, Zidun Wang. Correlation between left atrial function and the left atrial low voltage zones in patients with atrial fibrillation and stroke[J]. Chinese Journal of Heart and Heart Rhythm(Electronic Edition), 2022, 10(04): 231-237.

目的

评估非瓣膜性心房颤动(房颤)合并脑卒中患者的左心房功能与左心房低电压区的相关性。

方法

入选2022年4月1日至9月30日南京医科大学第一附属医院心血管内科心律失常病区收治的房颤合并卒中患者。用超声心动图评估左心房的功能[如左心房最大容积(LAVmax)、左心房最小容积(LAVmin)、左心房容积指数(LAVI)等],用消融术后窦性心律下的三维基质标测评估左心房内膜面的低电压区(LVZs),并根据LVZs面积分为有LVZs组(总LVZs面积比例>5%;)和无LVZs组(总LVZs面积比例≤5%),分析左心房功能与LVZs之间的相关性。

结果

共入选患者26例,年龄(60.77±10.31)岁,其中女8例(30.77%,8/26),有LVZs组7例,无LVZs组19例。与无LVZs组相比,有LVZs组患者中女性多[71.4%(5/7)对15.8%(3/19), P=0.014],CHA2DS2-VASc评分更高(6分对3分, P=0.039);LAVmax[(118.43±37.67) ml对(88.11±30.00) ml, P=0.043]与LAVmin[(97.00±37.59) ml对(54.89±29.42) ml, P =0.006)]均大、LAVI大[65 (59, 71)对44 (34,58), P=0.004]、左心房射血分数(LAEF)低(18.93%±8.30%对40.39%±15.66%, P=0.002)、左心房储存功能差[21.98 (12.22, 37.04)%对64.52(38.57,111.43)%, P=0.002]。多因素回归分析提示女性(OR=54.814, 95%CI 1.104~2721.590, P=0.044)、低LAEF(OR=0.822, 95%CI 0.696~0.970, P=0.020)是左心房存在明显LVZs的独立危险因素。

结论

基于超声心动图评价的左心房功能可以在一定程度上预测房颤合并卒中患者的左心房LVZs水平,从而指导射频消融策略。

Objective

To explore the correlation between left atrial function and the left atrial low-voltage zones (LVZs) in patients with nonvalvular atrial fibrillation and stroke.

Methods

Patients with atrial fibrillation and stroke who admitted to the department of cardiology, The First Affiliated Hospital with Nanjing Medical University were enrolled from April 1st to September 30th, 2022. A pre-procedural echocardiography was performed to assess the left atrial function, such as the max of left atrial volume (LAVmax), the minimum of left atrial volume (LAVmin), the index of left atrial volume (LAVI), and detailed voltage mapping by an electro-anatomical mapping system was applied to evaluate the LA LVZs. Patients were divided into two groups according to the presence of the LVZs: LVZs group (LVZs ratio>5%) and no LVZs group (LVZs ratio≤5%). The correlation between the LVZs and left atrial function was then analyzed.

Results

There were 26 patients enrolled totally, aged (60.77±10.31) years, 8 female (30.77%,8/26), 7 in LVZs group, 19 in no LVZs group. Compared to no LVZs group, the patients in LVZs group presented more women [71.4% (5/7) vs. 15.8% (3/19), P =0.014) and higher CHA2DS2-VASc scores (6 vs. 3, P =0.039). Echocardiography showed larger LAV max [(118.43±37.67) ml vs. (88.11±30.00) ml, P =0.043)], larger LAV min [(97.00±37.59) ml vs. [(54.89±29.42) ml, P =0.006], higher LAVI (65 vs. 44, P=0.004), lower LAEF (18.93%±8.30% vs. 40.39%±15.66%, P=0.002) and worse Reservoir function [21.98(12.22, 37.04)% vs. 64.52(38.57, 111.43)%, P=0.002]. Multivariable logistic regression analyses revealed female (OR=54.814, 95%CI 1.104-2721.590, P=0.044), lower LAEF(OR=0.822, 95%CI 0.696-0.970, P=0.020) to be independent predictors of the presence of LVZs.

Conclusion

Echocardiography-based assessment of left atrial function can predict the level of the left atrial LVZs in patients with atrial fibrillation and stroke, thereby guiding subsequent ablation strategies.

图1 左心房纵向应变获取示意图[1A为超声心动图心尖四腔心切面,绿色线条所示为左心房;1B为超声心动图Auto Strain LA模式,自动获取左心房储存期纵向应变值、左心房通道期纵向应变值及左心房收缩期的纵向应变值]LASr_ED为左心房储存期纵向应变值、LAScd_ED为左心房通道期纵向应变值、LASct_ED为左心房收缩期的纵向应变值
表1 有低电压区组与无低电压区组患者的基线资料
表2 有低电压区组与无低电压区组患者的超声心动图参数资料比较
图2 有低电压区组与无低电压区组典型患者的左心房功能对比[2A为二维超声心动图心尖四腔心切面,绿色线条所示为左心房;2B为根据2A自动获取LASr_ED、LAScd_ED及LASct_ED数值;2C为三维超声心动图心尖四腔心切面,主要记录LA及LV容积参数;2D为根据2C数据自动获取的左心房容积参数,并根据HR、Height、Weight及BSA校对]LV为左心室;LA为左心房。第四列中HR为心率;Weight为体重;Height为身高;BSA为体表面积。LASr_ED为左心房储存期纵向应变值、LAScd_ED为左心房通道期纵向应变值、LASct_ED为左心房收缩期的纵向应变值
图3 有低电压区组与无低电压区组典型左心房低电压区示意图[3A为有低电压区患者左心房三维模型在四个体位下的展示,其中花斑样区域为低电压区;3B为无低电压区患者左心房三维模型在四个体位下的展示,其中未见明显花斑样低电压区]AP为前后位,PA为后前位,RAO为右前斜位,LAO为左前斜位,蓝色:左侧肺静脉,灰色:右侧肺静脉,紫色:左心房体部(含心耳)
表3 超声心动图评价左心房功能参数与左心房低电压区的相关性分析
[1]
Xintarakou A, Tzeis S, Psarras S, et al. Atrial fibrosis as a dominant factor for the development of atrial fibrillation: facts and gaps[J]. Europace, 2020, 22(3):342-351.
[2]
Yang B, Jiang C, Lin Y, et al. STABLE-SR (electrophysiological substrate ablation in the left atrium during sinus rhythm) for the treatment of nonparoxysmal atrial fibrillation: a prospective, multicenter randomized clinical trial[J]. Circ Arrhythm Electrophysiol, 2017, 10(11):e005405.
[3]
Seewöster T, Spampinato RA, Sommer P, et al. Left atrial size and total atrial emptying fraction in atrial fibrillation progression[J]. Heart Rhythm, 2019, 16(11):1605-1610.
[4]
Schönbauer R, Tomala J, Kirstein B, et al. Left atrial phasic transport function closely correlates with fibrotic and arrhythmogenic atrial tissue degeneration in atrial fibrillation patients: cardiac magnetic resonance feature tracking and voltage mapping[J]. Europace, 2021, 23(9):1400-1408.
[5]
Singh A, Carvalho Singulane C, Miyoshi T, et al. Normal values of left atrial size and function and the impact of age: results of the World Alliance Societies of Echocardiography Study[J]. J Am Soc Echocardiogr, 2022, 35(2):154-164.e3.
[6]
Yamaguchi T, Tsuchiya T, Fukui A, et al. Impact of the extent of low-voltage zone on outcomes after voltage-based catheter ablation for persistent atrial fibrillation[J]. J Cardiol, 2018, 72(5):427-433.
[7]
Oakes RS, Badger TJ, Kholmovski EG, et al. Detection and quantification of left atrial structural remodeling with delayed-enhancement magnetic resonance imaging in patients with atrial fibrillation[J]. Circulation, 2009, 119(13):1758-1767.
[8]
Platonov PG, Mitrofanova LB, Orshanskaya V, et al. Structural abnormalities in atrial walls are associated with presence and persistency of atrial fibrillation but not with age[J]. J Am Coll Cardiol, 2011, 58(21):2225-2232.
[9]
Lin Y, Yang B, Garcia FC, et al. Comparison of left atrial electrophysiologic abnormalities during sinus rhythm in patients with different type of atrial fibrillation[J]. J Interv Card Electrophysiol, 2014, 39(1):57-67.
[10]
Marrouche NF, Wilber D, Hindricks G, et al. Association of atrial tissue fibrosis identified by delayed enhancement MRI and atrial fibrillation catheter ablation: the DECAAF study[J]. JAMA, 2014, 311(5):498-506.
[11]
Yang G, Zheng L, Jiang C, et al. Circumferential pulmonary vein isolation plus low-voltage area modification in persistent atrial fibrillation: The STABLE-SR-II Trial[J]. JACC Clin Electrophysiol, 2022, 8(7):882-891.
[12]
Wang J, Sun X, Liu W, et al. Cardiac computed tomography-based epicardial adipose tissue assessment reveals association with electroanatomical voltage mapping in patients with atrial fibrillation[J]. Heart Lung Circ, 2022, 31(10):1385-1392.
[13]
Moller JE, Hillis GS, Oh JK, et al. Left atrial volume: a powerful predictor of survival after acute myocardial infarction[J]. Circulation, 2003, 107(17):2207-2212.
[14]
Kupczyńska K, Mandoli GE, Cameli M, et al. Left atrial strain - a current clinical perspective[J]. Kardiol Pol, 2021, 79(9):955-964.
[15]
Schaaf M, Andre P, Altman M, et al. Left atrial remodelling assessed by 2D and 3D echocardiography identifies paroxysmal atrial fibrillation[J]. Eur Heart J Cardiovasc Imaging, 2017, 18(1):46-53.
[1] 何金梅, 尹立雪, 谭静, 张文军, 王锐, 任梅, 廖明娇. 超声心肌做功技术对2型糖尿病患者潜在左心室心肌收缩功能损伤的评价[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1029-1035.
[2] 薛艳玲, 马小静, 谢姝瑞, 何俊, 夏娟, 何亚峰. 左心声学造影在急性心肌梗死合并室间隔穿孔中的应用价值[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1036-1039.
[3] 武玺宁, 欧阳云淑, 张一休, 孟华, 徐钟慧, 张培培, 吕珂. 胎儿心脏超声检查在抗SSA/Ro-SSB/La抗体阳性妊娠管理中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1056-1060.
[4] 杨水华, 何桂丹, 覃桂灿, 梁蒙凤, 罗艳合, 李雪芹, 唐娟松. 胎儿孤立性完全型肺静脉异位引流的超声心动图特征及高分辨率血流联合时间-空间相关成像的应用[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1061-1067.
[5] 张宝富, 俞劲, 叶菁菁, 俞建根, 马晓辉, 刘喜旺. 先天性原发隔异位型肺静脉异位引流的超声心动图诊断[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1074-1080.
[6] 赵红娟, 赵博文, 潘美, 纪园园, 彭晓慧, 陈冉. 应用多普勒超声定量分析正常中晚孕期胎儿左心室收缩舒张时间指数[J]. 中华医学超声杂志(电子版), 2023, 20(09): 951-958.
[7] 刘丹妮, 敖梦, 冉海涛, 李世玉, 秦芳. 三维超声心动图及二维斑点追踪成像对持续性心房颤动复律后双心房逆向重构的评估[J]. 中华医学超声杂志(电子版), 2023, 20(08): 827-835.
[8] 张璟璟, 赵博文, 潘美, 彭晓慧, 毛彦恺, 潘陈可, 朱玲艳, 朱琳琳, 蓝秋晔. 胎儿超声心动图测量McGoon指数在评价胎儿肺血管发育中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(08): 860-865.
[9] 徐鹏, 李军, 高巍伦, 王峥, 庞珅, 李春妮, 朱霆. 快速旋转扫查法在胎儿超声心动图检查中的应用价值[J]. 中华医学超声杂志(电子版), 2023, 20(07): 761-766.
[10] 应康, 杨璨莹, 刘凤珍, 陈丽丽, 刘燕娜. 左心室心肌应变对无症状重度主动脉瓣狭窄患者的预后评估价值[J]. 中华医学超声杂志(电子版), 2023, 20(06): 581-587.
[11] 吴赤球, 韦曙东, 张辉, 严许清, 梅朵卓嘎, 余丹. 驻不同海拔高度高原人员习服后心脏结构和功能变化的超声心动图评估[J]. 中华医学超声杂志(电子版), 2023, 20(06): 588-593.
[12] 谭芳, 杨娇娇, 沈玉琴, 李炎菲海, 王海蕊, 范思涵, 纪学芹. 胎儿心脏定量分析技术对正常胎儿心脏形态及收缩功能的评价[J]. 中华医学超声杂志(电子版), 2023, 20(06): 598-604.
[13] 罗刚, 泮思林, 陈涛涛, 许茜, 纪志娴, 王思宝, 孙玲玉. 超声心动图在胎儿心脏介入治疗室间隔完整的肺动脉闭锁中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(06): 605-609.
[14] 吴群, 张鑫, 李培, 王芳韵, 郑淋, 卫海燕, 马宁. 孤立型主动脉缩窄的超声心动图诊断及术后随访研究[J]. 中华医学超声杂志(电子版), 2023, 20(06): 642-646.
[15] 薛念余, 张盛敏, 吴凌恒, 沙蕾, 童揽月, 沈崔琴, 李朝军, 杜联芳. 研究血清胆红素对2型糖尿病患者心脏结构发生改变前心肌功能的影响[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1004-1009.
阅读次数
全文


摘要