切换至 "中华医学电子期刊资源库"

中华心脏与心律电子杂志 ›› 2023, Vol. 11 ›› Issue (01) : 39 -44. doi: 10.3877/cma.j.issn.2095-6568.2023.01.008

综述

血管紧张素受体脑啡肽酶抑制剂在心律失常患者中的应用
李娜1, 李军1, 郭李平1, 王海雄1,()   
  1. 1. 030000 太原,山西省心血管病医院心血管内科
  • 收稿日期:2022-05-31 出版日期:2023-03-25
  • 通信作者: 王海雄
  • 基金资助:
    山西省基础研究计划(20210302123346); 山西省医学重点科研(2021XM45); 山西省心血管病医院科研激励计划(XYS20190206)

Angiotensin receptor neprilysin inhibitor (ARNI) and cardiac arrhythmias

Na Li1, Jun Li1, Liping Guo1, Haixiong Wang1,()   

  1. 1. Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan 030000, China
  • Received:2022-05-31 Published:2023-03-25
  • Corresponding author: Haixiong Wang
引用本文:

李娜, 李军, 郭李平, 王海雄. 血管紧张素受体脑啡肽酶抑制剂在心律失常患者中的应用[J]. 中华心脏与心律电子杂志, 2023, 11(01): 39-44.

Na Li, Jun Li, Liping Guo, Haixiong Wang. Angiotensin receptor neprilysin inhibitor (ARNI) and cardiac arrhythmias[J]. Chinese Journal of Heart and Heart Rhythm(Electronic Edition), 2023, 11(01): 39-44.

肾素-血管紧张素-醛固酮系统(RAAS)在心血管疾病中发挥着重要作用。RAAS短期激活有利于维持早期心力衰竭时的心排血量,而长期RAAS激活则会导致结构重塑和心功能不全。钠尿肽(NP)可通过促进水钠排泄和血管舒张来平衡RAAS和交感神经系统激活带来的影响。脑啡肽酶是一种主要的NP降解酶,可降解多种血管调节因子。联合使用血管紧张素受体脑啡肽酶抑制剂(ARNI)在治疗心力衰竭中效果显著,同时可能降低房性和室性心律失常风险。本文综述了ARNI与心律失常之间的可能联系及潜在分子机制,为ARNI在心血管系统中的治疗提供了一定循证医学的依据。

图1 肾素-血管紧张素-醛固酮系统在肾脏与心血管系统中的调节作用
图2 血管紧张素受体脑啡肽酶抑制剂作用机制示意图RAAS为肾素-血管紧张素-醛固酮系统,ANP为心房钠尿肽,BNP为B型钠尿肽,ARNI为血管紧张素受体脑啡肽酶抑制剂,NP为利尿肽,AT为血管紧张素受体,Ang为血管紧张素
表1 血管紧张素受体脑啡肽酶抑制剂致心律失常和抗心律失常作用的临床证据
临床试验 研究对象 试验组及对照组 心律失常相关研究指标 结论
SAVE THE RHYTHM研究17 HFrEF+ CRT-D或ICD 60例患者接受ARNI治疗并随 访12个月 每月平均持续AT或AF发 作次数、AT/AF总负荷、 平均每小时PVC次数和 CRT-D患者每日双心室 起搏比例

抗心律失常

(对于既往无AF或非永久性AF的患者,使用ARNI可降低AF的发生率和负荷)

De Vecchis等18 心功能Ⅱ~III级(NYHA分 级)慢性心衰;窦性心律 伴非永久性AF;近6个 月无心梗,无体循环或肺 循环栓塞 80例患者(40例使用ARNI, 40例使用RAAS阻滞剂) 随访12个月AF复发的风险

抗心律失常

(ARNI比RAAS阻滞剂降低AF复发的风险)

McMurray等20 心功能Ⅱ~Ⅳ级(NYHA分级)的HFrEF,LVEF≤40% 8 442例(ARNI 4 187例,依那 普利4 212例) 新发AF发生率

无影响

(ARNI组新发AF84例,依那普利组83例,P=0.84)

PARAGON-HF研究21 心功能Ⅱ~Ⅳ级(NYHA分 级)的HFpEF,最近6个 月内LVEF≥45%

4 796例

(2 479例女性和2 317例男性被随机分配到ARNI组和缬沙坦组)

新发AF发生率

致心律失常

(女性使用ARNI及缬沙坦后发生新发AF为84例和60例;男性使用ARNI及缬沙坦后发生新发AF为53例和65例)

Martens等19 心功能Ⅱ~Ⅳ级(NYHA分 级)的HFrEF,LVEF≤ 35%,植入ICD或CRT,先口服RSSA阻滞剂,后 替换为ARNI 151例患者进行了12个月的 随访 仪器记录到的心律失常事 件(VT/VF,非持续性VT, 每小时PVC负荷;AF负 荷)

抗心律失常

(启动ARNI治疗前后VT/VF发作≥1次的患者例数为19对10,P<0.001;总VT/VF 发作次数51对14,P<0.001;ARNI干预对AF负荷无影响)

PARADIGM-HF研究15 心功能Ⅱ~Ⅳ级(NYHA分 级)的HFrEF,LVEF≤35% 8 399例(其中1 243例植入 ICD) SCD和全因死亡率

抗心律失常

(降低SCD风险,与ICD状态无关)

Vicent等22 接受ARNI治疗 218例 持续性VT

致心律失常

(19例患者应用SV后出现持续性室性心律失常;6例患者在停用SV后出现新的心律失常事件)

Chang等23 心梗后心衰的兔模型 21例(安慰剂组、缬沙坦组、 ARNI组各7例) VT的诱导率

抗心律失常

(降低了VT的诱导率)

Chang等24 心梗后心衰的鼠模型 19例(9例依那普利,10例AR NI) VT的诱导率

抗心律失常

(降低了VT的诱导率)

[1]
Fountain JH, Lappin SL. Physiology, renin angiotensin system[M]. Treasure Island: StatPearls Publishing, 2022.
[2]
Rossi F, Mascolo A, Mollace V. The pathophysiological role of natriuretic peptide-RAAS cross talk in heart failure[J]. Int J Cardiol, 2017, 226:121-125.
[3]
李小荣, 郑旭辉, 李新立. 血管紧张素受体脑啡肽酶抑制剂在心力衰竭治疗中的研究进展及展望[J]. 中国循环杂志, 2018, 33(2):195-198.
[4]
Dorey TW, Mackasey M, Jansen HJ, et al. Natriuretic peptide receptor B maintains heart rate and sinoatrial node function via cyclic GMP-mediated signalling[J]. Cardiovasc Res, 2022, 118(8):1917-1931.
[5]
Gong B, Wu Z, Li Z. Efficacy and safety of nesiritide in patients with decompensated heart failure: a meta-analysis of randomised trials[J]. BMJ Open, 2016, 6(1):e008545.
[6]
Polina I, Spicer MJ, Domondon M, et al. Inhibition of neprilysin with sacubitril without RAS blockage aggravates renal disease in Dahl SS rats[J]. Ren Fail, 2021, 43(1):315-324.
[7]
Kostis JB, Packer M, Black HR, et al. Omapatrilat and enalapril in patients with hypertension: the omapatrilat cardiovascular treatment vs. enalapril (OCTAVE) trial[J]. Am J Hypertens, 2004, 17(2):103-111.
[8]
Bas M, Adams V, Suvorava T, et al. Nonallergic angioedema: role of bradykinin[J]. Allergy, 2007, 62(8):842-856.
[9]
Ksander GM, Ghai RD, deJesus R, et al. Dicarboxylic acid dipeptide neutral endopeptidase inhibitors[J]. J Med Chem, 1995, 38(10):1689-1700.
[10]
Vanneste Y, Michel A, Dimaline R, et al. Hydrolysis of alpha-human atrial natriuretic peptide in vitro by human kidney membranes and purified endopeptidase-24.11. Evidence for a novel cleavage site[J]. Biochem J, 1988, 254(2):531-537.
[11]
Chen CH. Critical questions about PARADIGM-HF and the Future[J]. Acta Cardiol Sin, 2016, 32(4):387-396.
[12]
Verhaert D, Brunner-La Rocca HP, van Veldhuisen DJ, et al. The bidirectional interaction between atrial fibrillation and heart failure: consequences for the management of both diseases[J]. Europace, 2021, 23(23 Suppl 2):ii40-ii45.
[13]
Sutanto H, Lyon A, Lumens J, et al. Cardiomyocyte calcium handling in health and disease: insights from in vitro and in silico studies[J]. Prog Biophys Mol Biol, 2020, 157:54-75.
[14]
Verma A, Kalman JM, Callans DJ. Treatment of patients with atrial fibrillation and heart failure with reduced ejection fraction[J]. Circulation, 2017, 135(16):1547-1563.
[15]
Rohde LE, Chatterjee NA, Vaduganathan M, et al. Sacubitril/valsartan and sudden cardiac death according to implantable cardioverter-defibrillator use and heart failure cause: a PARADIGM-HF analysis[J]. JACC Heart Fail, 2020, 8(10):844-855.
[16]
Russo V, Bottino R, Rago A, et al. The effect of sacubitril/valsartan on device detected arrhythmias and electrical parameters among dilated cardiomyopathy patients with reduced ejection fraction and implantable cardioverter defibrillator[J]. J Clin Med, 2020, 9(4):1111.
[17]
Guerra F, Pimpini L, Flori M, et al. Sacubitril/valsartan reduces atrial fibrillation and supraventricular arrhythmias in patients with HFrEF and remote monitoring: preliminary data from the SAVE THE RHYTHM[J]. European Heart Journal, 2020, 41(suppl2): ehaa946.0926.
[18]
De Vecchis R, Paccone A, Di Maio M. Favorable effects of sacubitril/valsartan on the peak atrial longitudinal strain in patients with chronic heart failure and a history of one or more episodes of atrial fibrillation: a retrospective cohort study[J]. J Clin Med Res, 2020, 12(2):100-107.
[19]
Martens P, Nuyens D, Rivero-Ayerza M, et al. Sacubitril/valsartan reduces ventricular arrhythmias in parallel with left ventricular reverse remodeling in heart failure with reduced ejection fraction[J]. Clin Res Cardiol, 2019, 108(10):1074-1082.
[20]
McMurray JJ, Packer M, Desai AS, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure[J]. N Engl J Med, 2014, 371(11):993-1004.
[21]
McMurray J, Jackson AM, Lam C, et al. Effects of sacubitril-valsartan versus valsartan in women compared with men with heart failure and preserved ejection fraction: insights from PARAGON-HF[J]. Circulation, 2020, 141(5):338-351.
[22]
Vicent L, Méndez-Zurita F, Viñolas X, et al. Clinical characteristics of patients with sustained ventricular arrhythmias after sacubitril/valsartan initiation[J]. Heart Vessels, 2020, 35(1):136-142.
[23]
Chang PC, Wo HT, Lee HL, et al. Sacubitril/valsartan therapy ameliorates ventricular tachyarrhythmia inducibility in a rabbit myocardial infarction model[J]. J Card Fail, 2020, 26(6):527-537.
[24]
Chang PC, Lin SF, Chu Y, et al. LCZ696 Therapy reduces ventricular tachyarrhythmia inducibility in a myocardial infarction-induced heart failure rat model[J]. Cardiovasc Ther, 2019, 2019:6032631.
[25]
Li LY, Lou Q, Liu GZ, et al. Sacubitril/valsartan attenuates atrial electrical and structural remodelling in a rabbit model of atrial fibrillation[J]. Eur J Pharmacol, 2020, 881:173120.
[26]
Cheng WH, Lugtu IC, Chang SL, et al. Effects of angiotensin receptor-neprilysin inhibitor in arrhythmogenicity following left atrial appendage closure in an animal model[J]. Cardiovasc Drugs Ther, 2021, 35(4):759-768.
[27]
Sung YL, Lin TT, Syu JY, et al. Reverse electromechanical modelling of diastolic dysfunction in spontaneous hypertensive rat after sacubitril/valsartan therapy[J]. ESC Heart Fail, 2020, 7(6):4040-4050.
[28]
Tsai YN, Cheng WH, Chang YT, et al. Mechanism of angiotensin receptor-neprilysin inhibitor in suppression of ventricular arrhythmia[J]. J Cardiol, 2021, 78(4):275-284.
[29]
Huo JY, Jiang WY, Chen C, et al. Effects of angiotensin receptor neprilysin inhibitors on inducibility of ventricular arrhythmias in rats with ischemic cardiomyopathy[J]. Int Heart J, 2019, 60(5):1168-1175.
[30]
Eiringhaus J, Wünsche CM, Tirilomis P, et al. Sacubitrilat reduces pro-arrhythmogenic sarcoplasmic reticulum Ca(2+) leak in human ventricular cardiomyocytes of patients with end-stage heart failure[J]. ESC Heart Fail, 2020, 7(5):2992-3002.
[31]
Palaniyandi SS, Sun L, Ferreira JC, et al. Protein kinase C in heart failure: a therapeutic target?[J]. Cardiovasc Res, 2009, 82(2):229-239.
[32]
Aguilar M, Rose RA, Takawale A, et al. New aspects of endocrine control of atrial fibrillation and possibilities for clinical translation[J]. Cardiovasc Res, 2021, 117(7):1645-1661.
[33]
van Heerebeek L, Paulus WJ. Understanding heart failure with preserved ejection fraction: where are we today?[J]. Neth Heart J, 2016, 24(4):227-236.
[1] 中华医学会儿科学分会心血管学组胎儿心脏病协作组, 中华医学会儿科学分会心血管学组围产期先天性心脏病诊疗协作组, 周开宇, 陈笋, 王川, 李一飞, 潘微, 赵博文, 张玉奇, 逄坤静, 丁文虹, 任芸芸, 林建华, 韩波, 吕海涛, 张清友, 武育蓉, 刘保民, 吴琳, 张艳敏, 肖婷婷, 何怡华, 华益民. 胎儿心律失常产前治疗及管理专家指导意见[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(01): 15-29.
[2] 于海华, 宫建, 王国峰, 于嵩, 唐燕妮. 中孕期孕妇的碘营养状态对心脏电信号的影响[J]. 中华妇幼临床医学杂志(电子版), 2019, 15(01): 8-13.
[3] 魏丽, 周婧雅, 乔莉娜, 叶强华. 儿童室性早搏的心率变异性分析[J]. 中华妇幼临床医学杂志(电子版), 2018, 14(06): 644-648.
[4] 祝彩霞, 王子莲. 妊娠合并心律失常:心室率异常[J]. 中华产科急救电子杂志, 2022, 11(01): 8-12.
[5] 曹宾, 郭瑛, 夏盼盼, 刘佳榛, 王骏, 孙育民. 非阵发性心房颤动的治疗策略:来自心脏电生理一线医师的问卷调查[J]. 中华心脏与心律电子杂志, 2023, 11(03): 147-153.
[6] 何浪, 曾光, 邹卓艺, 李世强, 王审, 许峥贵. 无导线起搏器单中心植入及中长期随访分析[J]. 中华心脏与心律电子杂志, 2022, 10(02): 101-105.
[7] 杜先锋, 储慧民. 心律失常诊治进展2021大盘点[J]. 中华心脏与心律电子杂志, 2022, 10(01): 54-59.
[8] 孙星星, 颜清, 居维竹, 刘海雷, 陈红武, 陈明龙. 起源于左下肺静脉和左心耳之间异位引流口的房性心动过速一例[J]. 中华心脏与心律电子杂志, 2022, 10(01): 49-51.
[9] 居维竹, 陈明龙. 左心室假腱索起源室性心动过速一例[J]. 中华心脏与心律电子杂志, 2022, 10(01): 52-53.
阅读次数
全文


摘要