切换至 "中华医学电子期刊资源库"

中华心脏与心律电子杂志 ›› 2024, Vol. 12 ›› Issue (02) : 102 -112. doi: 10.3877/cma.j.issn.2095-6568.2024.02.006

临床研究

连续起搏记录技术在左束支起搏中的应用:不同深度间隔起搏的电生理特点
沈佳波1, 江隆福1,(), 吴昊1, 李恒栋1, 张璐1, 钟进彦1, 卓珊珊1, 郑南1, 张越琳1   
  1. 1. 315000 宁波,宁波市第二医院心内科
  • 收稿日期:2023-10-15 出版日期:2024-06-25
  • 通信作者: 江隆福
  • 基金资助:
    浙江省基础公益研究计划(LGF22H020009); 宁波市第二医院华美研究基金(2023HMKY26)

Application of continuous pacing recording technique in left bundle branch pacing: electrophysiological characteristics of pacing at different septal depth

Jiabo Shen1, Longfu Jiang1,(), Hao Wu1, Hengdong Li1, Lu Zhang1, Jinyan Zhong1, Shanshan Zhuo1, Nan Zheng1, Yuelin Zhang1   

  1. 1. Department of Cardiology, Ningbo No.2 Hospital, Ningbo 315000, China
  • Received:2023-10-15 Published:2024-06-25
  • Corresponding author: Longfu Jiang
引用本文:

沈佳波, 江隆福, 吴昊, 李恒栋, 张璐, 钟进彦, 卓珊珊, 郑南, 张越琳. 连续起搏记录技术在左束支起搏中的应用:不同深度间隔起搏的电生理特点[J]. 中华心脏与心律电子杂志, 2024, 12(02): 102-112.

Jiabo Shen, Longfu Jiang, Hao Wu, Hengdong Li, Lu Zhang, Jinyan Zhong, Shanshan Zhuo, Nan Zheng, Yuelin Zhang. Application of continuous pacing recording technique in left bundle branch pacing: electrophysiological characteristics of pacing at different septal depth[J]. Chinese Journal of Heart and Heart Rhythm(Electronic Edition), 2024, 12(02): 102-112.

目的

评估使用连续起搏记录技术鉴别电极在不同间隔深度所出现的各种起搏模式的可行性及其电生理特征。

方法

连续纳入2021年4月至2023年9月宁波市第二医院有永久起搏器植入适应证并使用连续起搏和记录技术拟行左束支起搏(LBBP)的患者。记录标准12导联体表心电图及心腔内电图,比较LBBP植入过程中6种不同深度间隔起搏[分为右心室间隔起搏(RVSP)组、中间隔起搏(IVSP1和IVSP2)组、左心室间隔起搏(LVSP)组、非选择性LBBP(NSLBBP)组和选择性LBBP(SLBBP)组]的刺激到V6导联R波峰值时间(Stim-V6RWPT)、刺激到V1导联R波峰值时间、刺激到QRS波末端时间(Stim-QRSd)及V6-V1峰间期的差异。

结果

出现6种起搏模式转化的患者共201例(83.4%,201/241),年龄(74.1±9.7)岁,其中男占57.2%(115/201)。发现NSLBBP组和SLBBP组的Stim-V6RWPT显著短于RVSP组、IVSP1组、IVSP2组和LVSP组[(68.8±8.7) ms对(68.3±8.8)ms对(104.5±10.3) ms对(90.6±13.0) ms对(85.4±11.8) ms对(82.2±10.3) ms,P<0.001]。IVSP2组Stim-QRSd最窄[(134.3±14.8) ms],而不是NSLBBP组(137.4±16.4)ms。

结论

通过不间断起搏技术鉴别电极位于不同间隔深度的各种起搏模式是可行的。该6种起搏模式的特点各不相同,其中LBBP与LVSP的电生理特点明显不同,应该是两种完全不同的起搏模式,因此不应将LBBP与LVSP归入左束支区域起搏这个概念。

Objective

To identify various pacing modalities of different interventricular septum and evaluate their electrophysiological characteristics using continuous pacing and recording technique.

Methods

All of the patients with symptomatic bradycardia were consecutively enrolled from April 2021 to September 2023, and attempted to do left bundle branch (LBB) pacing (LBBP) in Ningbo No.2 Hospital using continuous pacing and recording technique. In the standard 12-lead electrocardiogram and intracardiac electrocardiogram, stimulus to V6 R wave peak time (Stim-V6RWPT), stimulus to V1 R wave peak time, stimulus to QRS end duration (Stim-QRSd), and V6-V1 interpeak were documented and compared during implantation, which was divided into right ventricular septal pacing (RVSP), intraventricular septal pacing (IVSP1 and IVSP2), left ventricular septal pacing (LVSP), non-selective LBBP (NSLBBP), and selective LBBP (SLBBP).

Results

Eighty-three point four percent (201/241) patients with six pacing modality transitions were included, (74.1±9.7) years old, and 115 (57.2%, 115/201) of them were male. The Stim-V6RWPT of NSLBBP and SLBBP were significantly shorter than RVSP, IVSP1 and IVSP2 [(68.8 ± 8.7) ms vs. (68.3 ± 8.8) ms vs. (104.5±10.3) ms, vs. (90.6±13.0) ms, vs. (82.2 ± 10.3) ms, P<0.001]. Stim-QRSd was the narrowest in IVSP2 [(134.3 ± 14.8) ms] instead of NSLBBP [(137.4 ± 16.4) ms].

Conclusion

It is feasible to distinguish various pacing modalities at different interventricular septum using uninterrupted pacing technique. Electrophysiological evidence from our study shows that the characteristics of these six pacing modalities are different, especially LBBP and LVSP. Therefore, LBBP and LVSP should not be brought under the LBB area pacing umbrella.

图1 透视下植入左束支起搏导线的过程(1A为三尖瓣造影;1B为拧入起搏导线位点;1C为鞘管造影确定电极深度)
图2 不同深度间隔起搏的电生理特点(从右侧间隔起搏逐渐向选择性左束支起搏的整个变化过程)RVSP为右侧间隔起搏,IVSP为中间隔起搏,LVSP为左侧间隔起搏,NSLBBP为非选择性左束支起搏,SLBBP为选择性左束支起搏,LBB为左束支,RWPT为R波达峰时间,EGM为心腔内电图
图3 左束支电极拧入室间隔期间连续不间断记录心电图和心腔内电图的变化特点RVSP为右侧间隔起搏,IVSP为中间隔起搏,LVSP为左侧间隔起搏,NSLBBP为非选择性左束支起搏,SLBBP为选择性左束支起搏,LBB为左束支,RWPT为R波达峰时间,EGM为心腔内电图
表1 左束支起搏患者的基本临床资料
表2 左束支起搏患者手术相关参数的临床特征
表3 不同间隔深度起搏模式下的心电图参数比较
图4 在穿室间隔过程中出现的6种起搏模式的心电图特征Stim-V6RWPT为刺激到V6导联R波达峰时间,Stim-V1RWPT为刺激到V1导联R波达峰时间,Stim-QRSd为刺激到QRS波末端时间;RVSP为右侧间隔起搏,IVSP为中间隔起搏,LVSP为左侧间隔起搏,NSLBBP为非选择性左束支起搏,SLBBP为选择性左束支起搏,RWPT为R波达峰时间,EGM为心腔内电图
[1]
Huang W, Su L, Wu S, et al. A novel pacing strategy with low and stable output: pacing the left bundle branch immediately beyond the conduction block[J]. Can J Cardiol, 2017, 33(12):1736.e1-e3.
[2]
中华医学会心电生理和起搏分会, 中国医师协会心律学专业委员会. 希氏-浦肯野系统起搏中国专家共识[J]. 中华心律失常学杂志, 2021, 25(1):10-36.
[3]
蔡蒙醒, 苏蓝, 黄伟剑. 心脏传导系统起搏的临床应用[J]. 中华心血管病杂志, 2022, 50(6):531-536.
[4]
Wu S, Su L, Vijayaraman P, et al. Left bundle branch pacing for cardiac resynchronization therapy: nonrandomized on-treatment comparison with his bundle pacing and biventricular pacing[J]. Can J Cardiol, 2021, 37(2):319-328.
[5]
Vijayaraman P, Nayak HM, Ellenbogen KA. Left ventricular septal versus left bundle branch pacing: a new beginning in cardiac resynchronization therapy?[J]. J Am Coll Cardiol, 2020, 75(4):360-362.
[6]
Heckman L, Luermans J, Curila K, et al. Comparing ventricular synchrony in left bundle branch and left ventricular septal pacing in pacemaker patients[J]. J Clin Med, 2021, 10(4):822.
[7]
Hou X, Qian Z, Wang Y, et al. Feasibility and cardiac synchrony of permanent left bundle branch pacing through the interventricular septum[J]. Europace, 2019, 21(11):1694-1702.
[8]
Wu S, Sharma PS, Huang W. Novel left ventricular cardiac synchronization: left ventricular septal pacing or left bundle branch pacing? [J]. Europace, 2020, 22(Suppl_2):ii10-ii18.
[9]
Jastrzębski M, Kiełbasa G, Curila K, et al. Physiology-based electrocardiographic criteria for left bundle branch capture[J]. Heart Rhythm, 2021, 18(6):935-943.
[10]
Jastrzębski M, Burri H, Kiełbasa G, et al. The V6-V1 interpeak interval: a novel criterion for the diagnosis of left bundle branch capture[J]. Europace, 2022, 24(1):40-47.
[11]
Wu S, Chen X, Wang S, et al. Evaluation of the criteria to distinguish left bundle branch pacing from left ventricular septal pacing[J]. JACC Clin Electrophysiol, 2021, 7(9):1166-1177.
[12]
Chen X, Qian Z, Zou F, et al. Differentiating left bundle branch pacing and left ventricular septal pacing: An algorithm based on intracardiac electrophysiology[J]. J Cardiovasc Electrophysiol, 2022, 33(3):448-457.
[13]
Shen J, Jiang L, Jiang F, et al. Premature beat of selective left bundle branch: a novel marker for reaching and capturing the left bundle branch[J]. J Interv Card Electrophysiol, 2023, 66(4):865-872.
[14]
Jastrzębski M, Kiełbasa G, Moskal P, et al. Fixation beats: A novel marker for reaching the left bundle branch area during deep septal lead implantation[J]. Heart Rhythm, 2021, 18(4):562-569.
[15]
Kusumoto FM, Schoenfeld MH, Barrett C, et al. 2018 ACC/AHA/HRS Guideline on the evaluation and management of patients with bradycardia and cardiac conduction delay: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines and the Heart Rhythm Society[J]. Circulation, 2019, 140(8):e382-e482.
[16]
Shen J, Jiang L, Wu H, et al. A Continuous pacing and recording technique for differentiating left bundle branch pacing from left ventricular septal pacing: electrophysiologic evidence from an intrapatient-controlled study[J]. Can J Cardiol, 2023, 39(1):1-10.
[17]
Shen J, Jiang L, Pan L. Direct and indirect capture of the left bundle branch: dynamic retrograde atrial potential abrupt and gradual decrease[J]. HeartRhythm Case Rep, 2022, 8(6):425-427.
[18]
Vijayaraman P, Chelu MG, Curila K, et al. Cardiac conduction system pacing: a comprehensive update[J]. JACC Clin Electrophysiol, 2023, 9(11):2358-2387.
[19]
Zhang S, Zhou X, Gold MR. Left bundle branch pacing: JACC review topic of the week[J]. J Am Coll Cardiol, 2019, 74(24):3039-3049.
[20]
Shen J, Jiang L, Cai X, et al. Left bundle branch pacing guided by continuous pacing technique that can monitor electrocardiograms and electrograms in real time: a technical report[J]. Can J Cardiol, 2022, 38(8):1315-1317.
[21]
Wu H, Jiang L, Shen J. Recording an isoelectric interval as an endpoint of left bundle branch pacing with continuous paced intracardiac electrogram monitoring[J]. Kardiol Pol, 2022, 80(6):664-671.
[22]
Mafi-Rad M, Luermans JG, Blaauw Y, et al. Feasibility and acute hemodynamic effect of left ventricular septal pacing by transvenous approach through the interventricular septum[J]. Circ Arrhythm Electrophysiol, 2016, 9(3):e003344.
[23]
Huang W, Chen X, Su L, et al. A beginner's guide to permanent left bundle branch pacing[J]. Heart Rhythm, 2019, 16(12):1791-1796.
[24]
Jastrzębski M, Moskal P. Reaching the left bundle branch pacing area within 36 heartbeats[J]. Kardiol Pol, 2021, 79(5):587-588.
[25]
Liu X, Niu HX, Gu M, et al. Contrast-enhanced image-guided lead deployment for left bundle branch pacing[J]. Heart Rhythm, 2021, 18(8):1318-1325.
[26]
Shen J, Jiang L, Wu H, et al. High-pass filter settings and the role and mechanism of discrete ventricular electrograms in left bundle branch pacing[J]. Front Cardiovasc Med, 2022, 9:1059172.
[27]
Curila K, Jurak P, Jastrzebski M, et al. Left bundle branch pacing compared to left ventricular septal myocardial pacing increases interventricular dyssynchrony but accelerates left ventricular lateral wall depolarization[J]. Heart Rhythm, 2021, 18(8):1281-1289.
[28]
Tung R, Upadhyay GA. The burden of proof in defining conduction pacing criteria: back to fundamental electrophysiology[J]. JACC Clin Electrophysiol, 2021, 7(9):1178-1181.
[29]
Wu S, Zhou X, Huang W. Physiological pacing with conduction system capture: how to confirm bundle capture in clinical practice[J]. J Cardiovasc Electrophysiol, 2022, 33(6):1332-1335.
[30]
Wu H, Jiang L, Shen J. Characteristics and proposed meaning of intrinsic intracardiac electrogram morphology observed during the left bundle branch pacing procedure: a case report[J]. HeartRhythm Case Rep, 2022, 8(7):485-487.
[31]
Zheng N, Jiang L, Shen J, et al. Guidance on left bundle branch pacing using continuous pacing technique and changes in lead V1 characteristics under real-time monitoring[J]. Front Cardiovasc Med, 2023, 10:1195509.
[32]
Jastrzębski M, Moskal P, Bednarek A, et al. Programmed deep septal stimulation: a novel maneuver for the diagnosis of left bundle branch capture during permanent pacing[J]. J Cardiovasc Electrophysiol, 2020, 31(2):485-493.
[33]
Vijayaraman P, Patel N, Colburn S, et al. His-Purkinje conduction system pacing in atrioventricular block: new insights into site of conduction block[J]. JACC Clin Electrophysiol, 2022, 8(1):73-85.
[34]
Shimeno K, Tamura S, Nakatsuji K, et al. Characteristics and proposed mechanisms of QRS morphology observed during the left bundle branch pacing procedure[J]. Pacing Clin Electrophysiol, 2021, 44(12):1987-1994.
[35]
Shali S, Wu W, Bai J, et al. Current of injury is an indicator of lead depth and performance during left bundle branch pacing lead implantation[J]. Heart Rhythm, 2022, 19(8):1281-1288.
[36]
Shen J, Jiang L, Wu H, et al. Interesting phenomena during threshold testing of conduction system pacing: What is the mechanism? [J]. Pacing Clin Electrophysiol, 2023, 46(4):319-322.
[37]
Wu H, Jiang L, Shen J. Characteristics and proposed meaning of intrinsic intracardiac electrogram morphology observed during the left bundle branch pacing procedure: a case report[J]. HeartRhythm Case Rep, 2022, 8(7):485-487.
[38]
Cai X, Jiang L, Zhuo S, et al. Characteristics of intracardiac electrogram of the interventricular septum in the left bundle branch pacing[J]. BMC Cardiovasc Disord, 2022, 22(1):274.
[39]
Shen J, Jiang L, Wu H, et al. Case report: Left bundle branch pacing guided by real-time monitoring of current of injury and electrocardiography[J]. Front Cardiovasc Med, 2022, 9:1025620.
[40]
Shen J, Jiang L, Jiang F, et al. Premature beat of selective left bundle branch: a novel marker for reaching and capturing the left bundle branch[J]. J Interv Card Electrophysiol, 2023, 66(4):865-872.
[41]
Shen J, Jiang F, Jiang L. 2∶1 Intrahisian block with Wenckebach phenomenon during His bundle pacing[J]. J Electrocardiol, 2023, 77:55-57.
[42]
Mills RW, Cornelussen RN, Mulligan LJ, et al. Left ventricular septal and left ventricular apical pacing chronically maintain cardiac contractile coordination, pump function and efficiency[J]. Circ Arrhythm Electrophysiol, 2009, 2(5):571-579.
[43]
Sweeney MO, Hellkamp AS, Ellenbogen KA, et al. Adverse effect of ventricular pacing on heart failure and atrial fibrillation among patients with normal baseline QRS duration in a clinical trial of pacemaker therapy for sinus node dysfunction[J]. Circulation, 2003, 107(23):2932-2937.
[44]
Andersen HR, Nielsen JC, Thomsen PE, et al. Long-term follow-up of patients from a randomised trial of atrial versus ventricular pacing for sick-sinus syndrome[J]. Lancet, 1997, 350(9086):1210-1216.
[1] 王秀秀, 严霜霜, 邓晓奇, 熊峰. 二维斑点追踪成像评价左束支起搏左心室激动顺序与同步性[J]. 中华医学超声杂志(电子版), 2023, 20(04): 404-410.
阅读次数
全文


摘要