切换至 "中华医学电子期刊资源库"

中华心脏与心律电子杂志 ›› 2024, Vol. 12 ›› Issue (02) : 113 -118. doi: 10.3877/cma.j.issn.2095-6568.2024.02.007

综述

心力衰竭器械治疗新进展
李云峰1, 周世强2, 李飞1,()   
  1. 1. 710032 西安,空军军医大学西京医院心血管内科
    2. 710032 西安,空军军医大学西京医院心血管内科;741000 天水,天水市第一人民医院心血管内科
  • 收稿日期:2023-09-10 出版日期:2024-06-25
  • 通信作者: 李飞
  • 基金资助:
    国家自然科学基金(81870284)

New advances in device therapy for heart failure

Yunfeng Li1, Shiqiang Zhou2, Fei Li1,()   

  1. 1. Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an710032,China
    2. Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an710032,China; Department of Cardiology, Tianshui First People's Hospital, Tianshui 741000, China
  • Received:2023-09-10 Published:2024-06-25
  • Corresponding author: Fei Li
引用本文:

李云峰, 周世强, 李飞. 心力衰竭器械治疗新进展[J]. 中华心脏与心律电子杂志, 2024, 12(02): 113-118.

Yunfeng Li, Shiqiang Zhou, Fei Li. New advances in device therapy for heart failure[J]. Chinese Journal of Heart and Heart Rhythm(Electronic Edition), 2024, 12(02): 113-118.

心力衰竭(心衰)是各种心脏疾病的终末阶段,已成为全球主要公共卫生健康问题。随着人口老龄化加剧和心脏疾病谱改变,我国心衰发病率呈持续上升趋势。除指南指导的药物治疗,器械治疗基于心衰发生时出现的心脏结构异常、电生理改变以及神经内分泌紊乱等机制进行干预治疗,已被证明有助于进一步改善心功能和降低死亡率,开辟了心衰治疗的新途径。本文就器械治疗在心衰治疗中的重要作用及最新进展做一综述。

表1 基于器械治疗心力衰竭的方式
表2 不同器械治疗心力衰竭的临床研究
表3 正在进行的关于不同器械治疗心力衰竭的临床研究
[1]
Hao G, Wang X, Chen Z, et al. Prevalence of heart failure and left ventricular dysfunction in China: the China Hypertension Survey, 2012-2015[J]. Eur J Heart Fail, 2019, 21(11): 1329-1337.
[2]
Metra M, Lucioli P. Corrigendum to 'Prevalence of heart failure and left ventricular dysfunction in China: the China Hypertension Survey, 2012-2015' [Eur J Heart Fail 2019; 21: 1329-1337][J]. Eur J Heart Fail, 2020, 22(4): 759.
[3]
Chioncel O, Parissis J, Mebazaa A, et al. Epidemiology, pathophysiology and contemporary management of cardiogenic shock - a position statement from the Heart Failure Association of the European Society of Cardiology[J]. Eur J Heart Fail, 2020, 22(8):1315-1341.
[4]
Al Danaf J, Butler J, Yehya A. Updates on device-based therapies for patients with heart failure[J]. Curr Heart Fail Rep, 2018, 15(2):53-60.
[5]
Jones EC, Devereux RB, Roman MJ, et al. Prevalence and correlates of mitral regurgitation in a population-based sample (the Strong Heart Study) [J]. Am J Cardiol, 2001, 87(3): 298-304.
[6]
Feldman T, Kar S, Elmariah S, et al. Randomized comparison of percutaneous repair and surgery for mitral regurgitation: 5-year results of EVEREST II[J]. J Am Coll Cardiol, 2015, 66(25):2844-2854.
[7]
Maisano F, Franzen O, Baldus S, et al. Percutaneous mitral valve interventions in the real world: early and 1-year results from the ACCESS-EU, a prospective, multicenter, nonrandomized post-approval study of the MitraClip therapy in Europe[J]. J Am Coll Cardiol, 2013, 62(12):1052-1061.
[8]
Iung B, Armoiry X, Vahanian A, et al. Percutaneous repair or medical treatment for secondary mitral regurgitation: outcomes at 2 years[J]. Eur J Heart Fail, 2019, 21(12):1619-1627.
[9]
Obadia JF, Messika-Zeitoun D, Leurent G, et al. Percutaneous repair or medical treatment for secondary mitral regurgitation[J]. N Engl J Med, 2018, 379(24):2297-2306.
[10]
Stone GW, Lindenfeld J, Abraham WT, et al. Transcatheter mitral-valve repair in patients with heart failure[J]. N Engl J Med, 2018, 379(24):2307-2318.
[11]
Otto CM, Nishimura RA, Bonow RO, et al. 2020 ACC/AHA Guideline for the management of patients with valvular heart disease: executive summary: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines[J]. Circulation, 2021, 143(5): e35-e71.
[12]
Orban M, Rottbauer W, Williams M, et al. Transcatheter edge-to-edge repair for secondary mitral regurgitation with third-generation devices in heart failure patients - results from the Global EXPAND Post-Market study[J]. Eur J Heart Fail, 2023, 25(3):411-421.
[13]
Popolo Rubbio A, Testa L, Grasso C, et al. Transcatheter edge-to-edge mitral valve repair in atrial functional mitral regurgitation: insights from the multi-center MITRA-TUNE registry[J]. Int J Cardiol, 2022, 349:39-45.
[14]
Sodhi N, Asch FM, Ruf T, et al. Clinical outcomes with transcatheter edge-to-edge repair in atrial functional MR from the EXPAND study[J]. JACC Cardiovasc Interv, 2022, 15(17):1723-1730.
[15]
Witte KK, Lipiecki J, Siminiak T, et al. The REDUCE FMR trial: a randomized sham-controlled study of percutaneous mitral annuloplasty in functional mitral regurgitation[J]. JACC Heart Fail, 2019, 7(11): 945-955.
[16]
Muller D, Sorajja P, Duncan A, et al. 2-Year outcomes of transcatheter mitral valve replacement in patients with severe symptomatic mitral regurgitation[J]. J Am Coll Cardiol, 2021, 78(19):1847-1859.
[17]
Singh JP, Evans JC, Levy D, et al. Prevalence and clinical determinants of mitral, tricuspid, and aortic regurgitation (the Framingham Heart Study)[J]. Am J Cardiol, 1999, 83(6):897-902.
[18]
Vargas Abello LM, Klein AL, Marwick TH, et al. Understanding right ventricular dysfunction and functional tricuspid regurgitation accompanying mitral valve disease[J]. J Thorac Cardiovasc Surg, 2013, 145(5):1234-1241.e5.
[19]
Sorajja P, Whisenant B, Hamid N, et al. Transcatheter repair for patients with tricuspid regurgitation[J]. N Engl J Med, 2023, 388(20):1833-1842.
[20]
陈丹丹, 潘文志, 陈莎莎, 等. 结构性心脏病年度报告2022 [J/OL]. 中华心脏与心律电子杂志, 2023, 11(3): 129-140.
[21]
Mao Y, Li L, Liu Y, et al. Safety, efficacy, and clinical outcomes of transcatheter tricuspid valve replacement: one-year follow-up[J]. Front Cardiovasc Med, 2022, 9:1019813.
[22]
Mack MJ, Leon MB, Thourani VH, et al. Transcatheter aortic-valve replacement with a balloon-expandable valve in low-risk patients[J]. N Engl J Med, 2019, 380(18):1695-1705.
[23]
Forrest JK, Deeb GM, Yakubov SJ, et al. 2-Year outcomes after transcatheter versus surgical aortic valve replacement in low-risk patients[J]. J Am Coll Cardiol, 2022, 79(9):882-896.
[24]
中国医师协会心血管内科医师分会结构性心脏病专业委员会. 中国经导管主动脉瓣置换术临床路径专家共识(2021版)[J]. 中国循环杂志, 2022, 37(1):12-23.
[25]
Spitzer E, Van Mieghem NM, Pibarot P, et al. Rationale and design of the transcatheter aortic valve replacement to unload the left ventricle in patients with advanced heart failure (TAVR UNLOAD) trial[J]. Am Heart J, 2016, 182:80-88.
[26]
Gustafsson F, Rogers JG. Left ventricular assist device therapy in advanced heart failure: patient selection and outcomes[J]. Eur J Heart Fail, 2017, 19(5):595-602.
[27]
Mehra MR, Goldstein DJ, Uriel N, et al. Two-year outcomes with a magnetically levitated cardiac pump in heart failure[J]. N Engl J Med, 2018, 378(15):1386-1395.
[28]
Mehra MR, Uriel N, Naka Y, et al. A fully magnetically levitated left ventricular assist device - final report[J]. N Engl J Med, 2019, 380(17):1618-1627.
[29]
Hendriks T, Schurer R, Al Ali L, et al. Left ventricular restoration devices post myocardial infarction[J]. Heart Fail Rev, 2018, 23(6):871-883.
[30]
Yang YJ, Huo Y, Xu YW, et al. Percutaneous ventricular restoration therapy using the parachute device in Chinese patients with ischemic heart failure: three-month primary end-point results of PARACHUTE China study[J]. Chin Med J (Engl), 2016, 129(17):2058-2062.
[31]
Thomas M, Nienaber CA, Ince H, et al. Percutaneous ventricular restoration (PVR) therapy using the Parachute device in 100 subjects with ischaemic dilated heart failure: one-year primary endpoint results of PARACHUTE III, a European trial[J]. Euro Intervention, 2015, 11(6): 710-717.
[32]
Zhu Z, Zhu J, Yu J, et al. Percutaneous ventricular restoration prevents left ventricular remodeling post myocardial infarction: one-year evaluation of the Heartech first-in-man study[J]. J Card Fail, 2022, 28(4):604-613.
[33]
Klein P, Anker SD, Wechsler A, et al. Less invasive ventricular reconstruction for ischaemic heart failure[J]. Eur J Heart Fail, 2019, 21(12):1638-1650.
[34]
Mann DL, Lee RJ, Coats AJ, et al. One-year follow-up results from AUGMENT-HF: a multicentre randomized controlled clinical trial of the efficacy of left ventricular augmentation with Algisyl in the treatment of heart failure[J]. Eur J Heart Fail, 2016, 18(3):314-325.
[35]
Wang B, Lee RJ, Tao L. First-in-human transcatheter endocardial alginate-hydrogel implantation for the treatment of heart failure[J]. Eur Heart J, 2023, 44(4):326.
[36]
Fudim M, Abraham WT, von Bardeleben RS, et al. Device therapy in chronic heart failure: JACC state-of-the-art review[J]. J Am Coll Cardiol, 2021, 78(9):931-956.
[37]
Griffin JM, Borlaug BA, Komtebedde J, et al. Impact of interatrial shunts on invasive hemodynamics and exercise tolerance in patients with heart failure[J]. J Am Heart Assoc, 2020, 9(17):e016760.
[38]
Shah SJ, Borlaug BA, Chung ES, et al. Atrial shunt device for heart failure with preserved and mildly reduced ejection fraction (REDUCE LAP-HF II): a randomised, multicentre, blinded, sham-controlled trial[J]. Lancet, 2022, 399(10330):1130-1140.
[39]
Shang X, Liu M, Zhong Y, et al. Clinical study on the treatment of chronic heart failure with a novel D-shant atrium shunt device[J]. ESC Heart Fail, 2022, 9(3):1713-1720.
[40]
Naqvi SY, Jawaid A, Goldenberg I, et al. Non-response to cardiac resynchronization therapy[J]. Curr Heart Fail Rep, 2018, 15(5):315-321.
[41]
Kato H, Yanagisawa S, Sakurai T, et al. Efficacy of His bundle pacing on LV relaxation and clinical improvement in HF and LBBB[J]. JACC Clin Electrophysiol, 2022, 8(1):59-69.
[42]
Huang W, Wu S, Vijayaraman P, et al. Cardiac resynchronization therapy in patients with nonischemic cardiomyopathy using left bundle branch pacing[J]. JACC Clin Electrophysiol, 2020, 6(7): 849-858.
[43]
Wu S, Su L, Vijayaraman P, et al. Left bundle branch pacing for cardiac resynchronization therapy: nonrandomized on-treatment comparison with His bundle pacing and biventricular pacing[J]. Can J Cardiol, 2021, 37(2):319-328.
[44]
Vijayaraman P, Ponnusamy S, Cano Ó, et al. Left bundle branch area pacing for cardiac resynchronization therapy: results from the international LBBAP collaborative study group[J]. JACC Clin Electrophysiol, 2021, 7(2):135-147.
[45]
汤宝鹏, 董震宇. 心肌收缩力调节器的最佳适应证人群选择 [J/OL]. 中华心脏与心律电子杂志, 2022, 10(3): 129-132.
[46]
Kuschyk J, Falk P, Demming T, et al. Long-term clinical experience with cardiac contractility modulation therapy delivered by the Optimizer Smart system[J]. Eur J Heart Fail, 2021, 23(7):1160-1169.
[47]
Seferovic PM, Ponikowski P, Anker SD, et al. Clinical practice update on heart failure 2019: pharmacotherapy, procedures, devices and patient management. An expert consensus meeting report of the Heart Failure Association of the European Society of Cardiology[J]. Eur J Heart Fail, 2019, 21(10):1169-1186.
[48]
Abraham WT, Zile MR, Weaver FA, et al. Baroreflex activation therapy for the treatment of heart failure with a reduced ejection fraction[J]. JACC Heart Fail, 2015, 3(6):487-496.
[49]
Miyagi C, Miyamoto T, Karimov JH, et al. Device-based treatment options for heart failure with preserved ejection fraction[J]. Heart Fail Rev, 2021, 26(4):749-762.
[50]
Zile MR, Lindenfeld J, Weaver FA, et al. Baroreflex activation therapy in patients with heart failure with reduced ejection fraction[J]. J Am Coll Cardiol, 2020, 76(1):1-13.
[51]
Coats A, Abraham WT, Zile MR, et al. Baroreflex activation therapy with the Barostim™ device in patients with heart failure with reduced ejection fraction: a patient level meta-analysis of randomized controlled trials[J]. Eur J Heart Fail, 2022, 24(9):1665-1673.
[52]
Gold MR, Van Veldhuisen DJ, Hauptman PJ, et al. Vagus nerve stimulation for the treatment of heart failure: The INOVATE-HF trial[J]. J Am Coll Cardiol, 2016, 68(2):149-158.
[53]
Konstam MA, Udelson JE, Butler J, et al. Impact of autonomic regulation therapy in patients with heart failure: ANTHEM-HFrEF pivotal study design[J]. Circ Heart Fail, 2019, 12(11):e005879.
[54]
Fudim M, Zirakashvili T, Shaburishvili N, et al. Transvenous right greater splanchnic nerve ablation in heart failure and preserved ejection fraction: first-in-human study[J]. JACC Heart Fail, 2022, 10(10):744-752.
[55]
Fudim M, Fail PS, Litwin SE, et al. Endovascular ablation of the right greater splanchnic nerve in heart failure with preserved ejection fraction: early results of the REBALANCE-HF trial roll-in cohort[J]. Eur J Heart Fail, 2022, 24(8):1410-1414.
[1] 李颖, 潘绍卿, 丁明岩, 孙丹丹, 曲海波, 侯培培, 朱芳. 实时三维超声心动图对高度房室传导阻滞伴射血分数保留的心力衰竭患者左束支区域起搏后左心室功能及同步性的评价[J]. 中华医学超声杂志(电子版), 2023, 20(04): 430-436.
[2] 卢凯, 王香云. 急性心肌梗死后心力衰竭患者血清微小RNA-200a表达及临床意义[J]. 中华危重症医学杂志(电子版), 2023, 16(06): 488-491.
[3] 刘一凡, 高迪, 董佳, 朱凯媛, 潘新, 张风雷, 徐大春, 鄢春喜. 可溶性生长刺激表达基因2蛋白对急性心力衰竭住院患者的预后评估价值[J]. 中华危重症医学杂志(电子版), 2023, 16(01): 13-19.
[4] 张洪, 王宏宇. 神经酰胺与心脏和血管疾病关系的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(11): 1202-1205.
[5] 王震, 杨晓月, 苏康康, 王朝阳, 李少杰, 陈淑霞, 谷剑. β受体阻滞剂对心力衰竭合并房颤患者预后影响的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(04): 479-482.
[6] 王志明, 黄岳青, 马庆华, 陈卫海, 孙勤, 殷人麟, 吴雁鸣, 叶福龙, 尤华, 黄敏. “专科-全科”一体化联合管理在老年非瓣膜性房颤合并心衰患者中的应用:一项倾向性评分匹配研究[J]. 中华临床医师杂志(电子版), 2022, 16(12): 1188-1193.
[7] 李明雪, 李子墨, 田建立. 血压与心力衰竭的关系:研究现状与挑战[J]. 中华临床医师杂志(电子版), 2022, 16(08): 805-809.
[8] 唐红燕, 丹海俊, 高志红, 张作阳, 翟书梅, 吴少玉, 张玉. 心脏彩色多普勒超声在冠心病慢性心力衰竭患者临床诊断中的应用[J]. 中华临床医师杂志(电子版), 2022, 16(07): 676-679.
[9] 宗蔚蔚, 徐冬梅, 张新月, 耿洁. 医护一体化管理模式对沙库巴曲缬沙坦治疗老年心力衰竭患者用药依从性及并发症的影响[J]. 中华临床医师杂志(电子版), 2022, 16(06): 588-592.
[10] 杨旭希, 郑吉洋, 陈秀梅, 陈淑玲, 杨峻青, 苏芝琪, 左咏臻, 广东省医师协会心力衰竭专业医师分会, 广东省护士协会介入护士分会. 慢性心力衰竭患者容量管理护理专家共识[J]. 中华介入放射学电子杂志, 2023, 11(03): 201-207.
[11] 夏天, 孙磊, 朱业, 陈福坤, 顾仁杰, 郁维, 顾翔. 心脏再同步治疗超反应因疫情封控丢失而经调整起搏参数重新获得一例[J]. 中华心脏与心律电子杂志, 2024, 12(01): 51-53.
[12] 王雅, 邹花一阳, 孙伟. 心房分流术治疗心力衰竭的研究进展[J]. 中华心脏与心律电子杂志, 2024, 12(01): 45-50.
[13] 张诚霖, 李学美, 巫惠心, 李晓燕. 心力衰竭患者容量管理护理质量评价指标体系的构建[J]. 中华心脏与心律电子杂志, 2023, 11(03): 173-178.
[14] 孔倩文, 刘姗, 曾彩虹, 曾庆春. 有氧运动和抗阻运动对心力衰竭患者心率变异性影响的观察性研究[J]. 中华心脏与心律电子杂志, 2023, 11(03): 160-164.
[15] 黎俊聪, 黄莹, 杨婵娟, 屠燕. 钠-葡萄糖共转运体2抑制剂治疗心力衰竭的研究进展[J]. 中华心脏与心律电子杂志, 2023, 11(01): 45-49.
阅读次数
全文


摘要