切换至 "中华医学电子期刊资源库"

中华心脏与心律电子杂志 ›› 2025, Vol. 13 ›› Issue (03) : 173 -178. doi: 10.3877/cma.j.issn.2095-6568.2025.03.007

综述

可溶性鸟苷酸环化酶刺激剂在心力衰竭中的研究进展
寿任扬, 章海燕, 龙明智()   
  1. 210011 南京医科大学第二附属医院心血管内科
  • 收稿日期:2025-02-03 出版日期:2025-09-25
  • 通信作者: 龙明智
  • 基金资助:
    南京市卫生科技发展医药卫生科研课题(YKK23292)

Progress of soluble guanylate cyclase stimulators in heart failure

Renyang Shou, Haiyan Zhang, Mingzhi Long()   

  1. Department of Cardiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
  • Received:2025-02-03 Published:2025-09-25
  • Corresponding author: Mingzhi Long
引用本文:

寿任扬, 章海燕, 龙明智. 可溶性鸟苷酸环化酶刺激剂在心力衰竭中的研究进展[J/OL]. 中华心脏与心律电子杂志, 2025, 13(03): 173-178.

Renyang Shou, Haiyan Zhang, Mingzhi Long. Progress of soluble guanylate cyclase stimulators in heart failure[J/OL]. Chinese Journal of Heart and Heart Rhythm(Electronic Edition), 2025, 13(03): 173-178.

心力衰竭(心衰)是多种心脏疾病的严重表现形式或晚期阶段。尽管现代医学在药物及器械治疗方面取得了显著进展,患者预后有所改善,但死亡率和再住院率仍居高不下。可溶性鸟苷酸环化酶(sGC)刺激剂作为一类新型药物,通过特异性激活一氧化氮-sGC-环磷酸鸟苷信号通路,在改善心室重构、内皮功能及心肌收缩力等方面展现出独特优势。本文旨在综述sGC刺激剂在心衰中的作用机制、临床研究现状及未来发展方向。

图1 sGC刺激剂作用机制图L-arginine为L-精氨酸,eNOS为内皮型一氧化氮合酶,NO为一氧化氮,sGC为可溶性鸟苷酸环化酶,sGC stimulator为sGC刺激剂,GTP为三磷酸鸟苷,cGMP为环磷酸鸟苷,PKG为蛋白激酶,Fibrosis为纤维化,Hypertrophy为肥大,Vasodilation为血管舒张,Renal blood flow为肾血流
[1]
中华医学会心血管病学分会, 中国医师协会心血管内科医师分会, 中国医师协会心力衰竭专业委员会, 等. 中国心力衰竭诊断和治疗指南2024[J]. 中华心血管病杂志, 2024, 52(3):235-275.
[2]
GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017[J]. Lancet, 2018, 392(10159):1789-1858.
[3]
McDonagh TA, Metra M, Adamo M, et al. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure[J]. Eur Heart J, 2021, 42(36):3599-3726.
[4]
黎俊聪, 黄莹, 杨婵娟, 等. 钠-葡萄糖共转运体2抑制剂治疗心力衰竭的研究进展[J/OL]. 中华心脏与心律电子杂志, 2023, 11(1): 45-49.
[5]
Kang Y, Liu R, Wu JX, et al. Structural insights into the mechanism of human soluble guanylate cyclase[J]. Nature, 2019, 574(7777):206-210.
[6]
Adler J, Kuret A, Längst N, et al. Targets of cGMP/cGKI in cardiac myocytes[J]. J Cardiovasc Pharmacol, 2020, 75(6):494-507.
[7]
Sandner P, Stasch JP. Anti-fibrotic effects of soluble guanylate cyclase stimulators and activators: a review of the preclinical evidence[J]. Respir Med, 2017, 122 Suppl 1:S1-S9.
[8]
Hofmann F. The cGMP system: components and function[J]. Biol Chem, 2020, 401(4):447-469.
[9]
Münzel T, Gori T, Bruno RM, et al. Is oxidative stress a therapeutic target in cardiovascular disease?[J]. Eur Heart J, 2010, 31(22):2741-2748.
[10]
Kansakar S, Guragain A, Verma D, et al. Soluble guanylate cyclase stimulators in heart failure[J]. Cureus, 2021, 13(9):e17781.
[11]
Gheorghiade M, Marti CN, Sabbah HN, et al. Soluble guanylate cyclase: a potential therapeutic target for heart failure[J]. Heart Fail Rev, 2013, 18(2):123-134.
[12]
Ben Driss A, Devaux C, Henrion D, et al. Hemodynamic stresses induce endothelial dysfunction and remodeling of pulmonary artery in experimental compensated heart failure[J]. Circulation, 2000, 101(23):2764-2770.
[13]
Agnoletti L, Curello S, Bachetti T, et al. Serum from patients with severe heart failure downregulates eNOS and is proapoptotic: role of tumor necrosis factor-alpha[J]. Circulation, 1999, 100(19):1983-1991.
[14]
Seta Y, Shan K, Bozkurt B, et al. Basic mechanisms in heart failure: the cytokine hypothesis[J]. J Card Fail, 1996, 2(3):243-249.
[15]
Watanabe H. Treatment selection in pulmonary arterial hypertension: phosphodiesterase type 5 inhibitors versus soluble guanylate cyclase stimulator[J]. Eur Cardiol, 2018, 13(1):35-37.
[16]
Sandner P, Follmann M, Becker-Pelster E, et al. Soluble GC stimulators and activators: past, present and future[J]. Br J Pharmacol, 2024, 181(21):4130-4151.
[17]
Gawrys O, Kala P, Sadowski J, et al. Soluble guanylyl cyclase stimulators and activators: Promising drugs for the treatment of hypertension?[J]. Eur J Pharmacol, 2025, 987:177175.
[18]
Cordwin DJ, Berei TJ, Pogue KT. The role of sGC stimulators and activators in heart failure with reduced ejection fraction[J]. J Cardiovasc Pharmacol Ther, 2021, 26(6):593-600.
[19]
Beyer C, Reich N, Schindler SC, et al. Stimulation of soluble guanylate cyclase reduces experimental dermal fibrosis[J]. Ann Rheum Dis, 2012, 71(6):1019-1026.
[20]
Beyer C, Zenzmaier C, Palumbo-Zerr K, et al. Stimulation of the soluble guanylate cyclase (sGC) inhibits fibrosis by blocking non-canonical TGFβ signalling[J]. Ann Rheum Dis, 2015, 74(7):1408-1416.
[21]
Hewitson TD, Martic M, Darby IA, et al. Intracellular cyclic nucleotide analogues inhibit in vitro mitogenesis and activation of fibroblasts derived from obstructed rat kidneys[J]. Nephron Exp Nephrol, 2004, 96(2):e59-e66.
[22]
Murphy SP, Kakkar R, McCarthy CP, et al. Inflammation in heart failure: JACC state-of-the-art review[J]. J Am Coll Cardiol, 2020, 75(11):1324-1340.
[23]
Haghighat L, DeJong C, Teerlink JR. New and future heart failure drugs[J]. Nat Cardiovasc Res, 2024, 3(12):1389-1407.
[24]
Ahluwalia A, Foster P, Scotland RS, et al. Antiinflammatory activity of soluble guanylate cyclase: cGMP-dependent down-regulation of P-selectin expression and leukocyte recruitment[J]. Proc Natl Acad Sci U S A, 2004, 101(5):1386-1391.
[25]
Kintos DP, Salagiannis K, Sgouros A, et al. Identification of new multi-substituted 1H-pyrazolo[3,4-c]pyridin-7(6H)- ones as soluble guanylyl cyclase (sGC) stimulators with vasoprotective and anti-inflammatory activities[J]. Bioorg Chem, 2024, 144:107170.
[26]
Gheorghiade M, Greene SJ, Butler J, et al. Effect of vericiguat, a soluble guanylate cyclase stimulator, on natriuretic peptide levels in patients with worsening chronic heart failure and reduced ejection fraction: the SOCRATES-REDUCED randomized trial[J]. JAMA, 2015, 314(21):2251-2262.
[27]
Armstrong PW, Pieske B, Anstrom KJ, et al. Vericiguat in patients with heart failure and reduced ejection fraction[J]. N Engl J Med, 2020, 382(20):1883-1893.
[28]
Ezekowitz JA, O'Connor CM, Troughton RW, et al. N-terminal pro-B-type natriuretic peptide and clinical outcomes: vericiguat heart failure with reduced ejection fraction study[J]. JACC Heart Fail, 2020, 8(11):931-939.
[29]
Lam C, Giczewska A, Sliwa K, et al. Clinical outcomes and response to vericiguat according to index heart failure event: insights from the VICTORIA trial[J]. JAMA Cardiol, 2021, 6(6):706-712.
[30]
McDonagh TA, Metra M, Adamo M, et al. 2023 focused update of the 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure[J]. Eur Heart J, 2023, 44(37):3627-3639.
[31]
Pieske B, Maggioni AP, Lam C, et al. Vericiguat in patients with worsening chronic heart failure and preserved ejection fraction: results of the SOluble guanylate Cyclase stimulatoR in heArT failurE patientS with PRESERVED EF (SOCRATES-PRESERVED) study[J]. Eur Heart J, 2017, 38(15):1119-1127.
[32]
Armstrong PW, Lam C, Anstrom KJ, et al. Effect of vericiguat vs placebo on quality of life in patients with heart failure and preserved ejection fraction: the VITALITY-HFpEF randomized clinical trial[J]. JAMA, 2020, 324(15):1512-1521.
[33]
Udelson JE, Lewis GD, Shah SJ, et al. Effect of praliciguat on peak rate of oxygen consumption in patients with heart failure with preserved ejection fraction: the CAPACITY HFpEF randomized clinical trial[J]. JAMA, 2020, 324(15):1522-1531.
[34]
Dachs TM, Duca F, Rettl R, et al. Riociguat in pulmonary hypertension and heart failure with preserved ejection fraction: the haemoDYNAMIC trial[J]. Eur Heart J, 2022, 43(36):3402-3413.
[35]
Reddy Y, Butler J, Anstrom KJ, et al. Vericiguat global study in participants with chronic heart failure: design of the VICTOR trial[J]. Eur J Heart Fail, 2025, 27(2):209-218.
[36]
Saldarriaga CI, Zannad F, McMullan CJ, et al. Baseline characteristics of contemporary trial participants with heart failure and reduced ejection fraction: the VICTOR trial[J]. Eur J Heart Fail, 2025 ,27(8):1426-1435.
[1] 同娟, 乔燕, 田丹, 高萌, 毛书祥, 杨洋. 慢性阻塞性肺疾病伴心力衰竭患者继发肺部感染的危险因素分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(04): 516-520.
[2] 张晓玲, 肖浩, 贾玮宝, 张佳宁, 王媛. 妇科恶性肿瘤患者术后急性心力衰竭的影响因素分析[J/OL]. 中华临床医师杂志(电子版), 2025, 19(06): 420-425.
[3] 王美琴, 周昱和, 潘海涛, 王砚青, 赵平, 张志花. hs-CRP、NLR、IBI与慢性心力衰竭患者合并营养不良的相关性分析[J/OL]. 中华临床医师杂志(电子版), 2025, 19(05): 361-366.
[4] 姚晶, 邵兴慧. 射血分数中间值的心力衰竭患者的心脏康复研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(10): 961-964.
[5] 沙剑梅, 丁祥伟, 朱莉. 心房颤动合并心力衰竭患者导管消融的研究进展[J/OL]. 中华心脏与心律电子杂志, 2025, 13(03): 164-172.
[6] 梁潇, 薛小临. 《心力衰竭患者利尿剂抵抗诊断及管理中国专家共识》解读[J/OL]. 中华心脏与心律电子杂志, 2025, 13(02): 79-82.
[7] 夏盼盼, 徐志强, 孙育民. β受体阻滞剂在心血管疾病应用中的研究进展[J/OL]. 中华心脏与心律电子杂志, 2025, 13(02): 93-98.
[8] 曾嘉欣, 邹建刚. 左束支夺获的判断方法与临床意义[J/OL]. 中华心脏与心律电子杂志, 2024, 12(04): 225-233.
[9] 岳鑫, 张海锋, 李新立. 经皮心内膜心肌活检的操作流程及注意事项[J/OL]. 中华心脏与心律电子杂志, 2024, 12(04): 193-198.
[10] 米娜瓦尔·阿不都克力木, 董吁钢, 刘晨, 薛睿聪. 氯苯唑酸治疗野生型转甲状腺素蛋白心脏淀粉样变一例[J/OL]. 中华心脏与心律电子杂志, 2024, 12(02): 119-122.
[11] 李云峰, 周世强, 李飞. 心力衰竭器械治疗新进展[J/OL]. 中华心脏与心律电子杂志, 2024, 12(02): 113-118.
[12] 张杰, 曹剑. 心外膜脂肪与心血管疾病关系的研究进展[J/OL]. 中华老年病研究电子杂志, 2025, 12(02): 44-48.
[13] 曹婧然, 董福强, 张立剑, 刘长乐, 张煜坤, 陈康寅. 老年冠心病患者的营养风险、肌少症和衰弱筛查分析[J/OL]. 中华老年病研究电子杂志, 2024, 11(02): 5-9.
[14] 杨鹏, 王莉, 周湘哲, 袁宽道. 肺癌患者外周血UA/Cr值、NLR及NT-proBNP对围手术期发生急性心力衰竭的预测价值[J/OL]. 中华卫生应急电子杂志, 2025, 11(03): 153-158.
[15] 施晓燕, 张媛, 陈思敏, 王水莲. 四阶梯式康复方案联合动机性访谈对老年心力衰竭患者出院后预防急性发作的影响[J/OL]. 中华卫生应急电子杂志, 2025, 11(03): 159-164.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?