切换至 "中华医学电子期刊资源库"

中华心脏与心律电子杂志 ›› 2024, Vol. 12 ›› Issue (01) : 45 -50. doi: 10.3877/cma.j.issn.2095-6568.2024.01.010

综述

心房分流术治疗心力衰竭的研究进展
王雅1, 邹花一阳1, 孙伟1,()   
  1. 1. 210009 南京,南京医科大学第一附属医院(江苏省人民医院)心内科
  • 收稿日期:2023-05-07 出版日期:2024-03-25
  • 通信作者: 孙伟

Advances on interatrial shunt therapy for heart failure

Ya Wang1, Huayiyang Zou1, Wei Sun1,()   

  1. 1. Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Provience Hospital),Nanjing 210029,China
  • Received:2023-05-07 Published:2024-03-25
  • Corresponding author: Wei Sun
引用本文:

王雅, 邹花一阳, 孙伟. 心房分流术治疗心力衰竭的研究进展[J]. 中华心脏与心律电子杂志, 2024, 12(01): 45-50.

Ya Wang, Huayiyang Zou, Wei Sun. Advances on interatrial shunt therapy for heart failure[J]. Chinese Journal of Heart and Heart Rhythm(Electronic Edition), 2024, 12(01): 45-50.

心力衰竭(心衰)是各类心血管疾病发展的终末阶段,国内外指南根据患者左心室射血分数将心力衰竭分为四类,分别为射血分数减少型心衰(HFrEF)、射血分数中间值心衰(HFmEF)、射血分数保留型心衰(HFpEF)及最新提出的射血分数改善型心衰。虽然针对HFrEF治疗已取得巨大进展,但对其他类型心衰治疗手段仍有限。研究发现HFpEF主要病理生理机制与左心室舒张功能不全致左心房压升高及肺循环淤血有关,因此心房分流术通过降低HFpEF患者左心房压,或许可改善患者肺淤血症状,提高活动耐受力,降低患者心衰再住院率。本文综述近年来心房分流术治疗的最新研究进展及争议情况,以期为后期心房分流术标准化诊疗流程提供思路。

图1 主要在研心房分流装置总览[1A为Corvia IASD系统Ⅱ;1B为V-Wave(二代);1C为心房分流调节器;1D为APTURE系统;1E为可调节式射频心房分流系统(NoYA);1F为Alleviant系统;1G为Intershunt系统]
表1 心房分流术治疗心力衰竭临床研究总览
装置 研究 研究设计(主要纳入标准) 例数 发表年份 时间跨度 主要疗效终点
IASD 探索性研究 单臂[LVEF>45%,心功能Ⅱ~Ⅳ级(NYHA分级),静息PCWP>15 mmHg或运动负荷下PCWP>25 mmHg] 11

2014

2015

1个月

12个月

静息PCWP下降5 mmHg。心功能分级(NYHA)下降0.5;明尼苏达心衰评分下降29分;6 min步行距离增加32 m
REDUCE LAP-HF 单臂[LVEF>40%,心功能Ⅱ~Ⅳ级(NYHA分级),静息PCWP>15 mmHg或运动负荷下PCWP>25 mmHg] 64 2016 6个月 运动负荷下PCWP下降3mmHg;Qp/Qs 1.27;标准化峰值PCWP下降15 mmHg/W./kg
2016 12个月 心功能分级(NYHA)中位下降1级;6 min步行距离增加32 m;明尼苏达心衰评分下降15分;年通畅率98.5%
2018 36个月 年观察死亡率3.4/100;低于基线MAGGIC评分的10.2/100(P=0.02)
REDUCE LAP-HF机制研究 随机、假手术对照、双盲[心功能Ⅲ/Ⅳ级(NYHA分级),LVEF≥40%,运动负荷下PCWP≥15mmHg] 44 2018 1个月 最大运动负荷下PCWP下降3 mmHg,标准化峰值PCWP下降
2018 12个月 心衰年住院率下降67%(P=0.06);心功能(NYHA分级)中位下降1级;6 min步行距离和KCCQ无变化;通畅率100%
V-Wave Gen 1 探索性研究 单臂[心功能Ⅲ/Ⅳ级(NYHA分级),LVEF≤40%,PCWP≥15mmHg] 10 2016 3个月 8/9心功能分级(NYHA分级)改善;杜克活动度状态改善11;KCCQ改善35分;步行距离增加74 m;PCWP下降6mmHg
探索性研究 单臂[心功能Ⅲ/Ⅳ级(NYHA分级),LVEF>15%,至少1次1年内因心衰再住院] 38 2018 12个月 62%患者心功能Ⅰ/Ⅱ级(NYHA分级);73%KCCQ评级改善≥5分;步行距离增加28 m;PCWP、RAP或PAP没有显著改变;Qp/Qs为1.1;12个月时14%房间隔关闭,36%狭窄;分流患者血流动力学改善
V-Wave Gen 2 探索性研究 单臂[心功能Ⅲ/Ⅳ级(NYHA分级)] 6 2020 12个月 83%患者心功能Ⅰ/Ⅱ级(NYHA分级);杜克活动状态改善15;KCCQ升高32分;6 min步行距离增加64 m;Qp/Qs为1.16
Occlutech AFR AFR-PRELIEVE 单臂[心功能Ⅲ/Ⅳ级(NYHA分级);LVEF≥15%] 34 2019 6个月 HFrEF/HFpEF,心功能(NYHA分级)下降1.4/1.1;KCCQ改善16分/20分;6 min步行距离增加30/26 m;PCWP下降2/5 mmHg;Qp/Qs为1.3/1.1
NoYa RAISE trial 单臂 10 2022 6个月 分流口直径3~4mm;步行距离增加91 m;BNP下降2 186 pg/ml,6个月时3/10患者分流闭合
Alleviant

HF-1,HF-2,

HFrEF

单臂 33(28例HFpEF,5例HFrEF) 2022 分流口直径7 mm;非植入型;6个月时100%分流;运动负荷下PCWP下降;6 min步行距离增加;随访进行中
Alt Flow ALT FLOW 单臂 87 2023 6个月随访时,KCCQ改善23分,心功能(NYHA分级)改善,6 min步行距离提高36 m
IASD REDUCE LAP-HF II 双盲随机对照试验(LVEF>40%) 626 2022 5年 招募和2年随访完成。总体没有改善,但事后亚组分析提示PVR<1.74 WU组,心衰发生率降低50%,KCCQ改善42%(2年随访结果)
V-Wave RELIEVE-HF 单臂(Roll-in)+随机对照(第二阶段),[Ⅱ~Ⅳa级(NYHA分级),HFrEF和HFpEF] Roll-in组100例,后续随即对照纳入至500例 Roll-in组97例患者,招募于2022年10月完成。初步研究结果:安全性高,KCCQ和心功能(NYHA分级)改善,心脏结构良好重塑。
[1]
Lawton JS, Tamis-Holland JE, Bangalore S, et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure[J]. J Card Fail,2022, 28(5):1-167.
[2]
Sidney S, Go AS, Jaffe MG, et al. Association between aging of the US population and heart disease mortality from 2011 to 2017[J]. JAMA Cardiol, 2019, 4(12):1280-1286.
[3]
廖玉华, 杨杰孚, 张健, 等. 舒张性心力衰竭诊断和治疗专家共识[J]. 临床心血管病杂志, 2020, 36(1):1-10.
[4]
Litwin SE, Borlaug BA, Komtebedde J, et al. Update on atrial shunt therapy for treatment of heart failure[J]. Struct Heart, 2022, 6(6):100090.
[5]
中国医师协会心血管内科医师分会结构性心脏病专业委员会, 中国医师协会心血管内科医师分会心力衰竭专业委员会, 中国医师协会心血管外科医师分会结构性心脏病专业委员会, 等. 房间隔分流器治疗射血分数保留心力衰竭:中国专家认识和建议[J]. 中国介入心脏病学杂志, 2020, 28(12):661-666.
[6]
Kaye D, Shah SJ, Borlaug BA, et al. Effects of an interatrial shunt on rest and exercise hemodynamics: results of a computer simulation in heart failure[J]. J Card Fail, 2014, 20(3):212-221.
[7]
Di Tanna GL, Wirtz H, Burrows KL, et al. Evaluating risk prediction models for adults with heart failure: A systematic literature review[J]. PLoS One, 2020, 15(1):e0224135.
[8]
Feldman T, Mauri L, Kahwash R, et al. Transcatheter interatrial shunt device for the treatment of heart failure with preserved ejection fraction (REDUCE LAP-HF I [Reduce Elevated Left Atrial Pressure in Patients With Heart Failure]): a phase 2, randomized, sham-controlled trial[J]. Circulation, 2018, 137(4):364-375.
[9]
Berry N, Mauri L, Feldman T, et al. Transcatheter InterAtrial Shunt Device for the treatment of heart failure: Rationale and design of the pivotal randomized trial to REDUCE Elevated Left Atrial Pressure in Patients with Heart Failure II (REDUCE LAP-HF II)[J]. Am Heart J, 2020, 226:222-231.
[10]
Sun W, Zou H, Yong Y, et al. The RAISE trial: a novel device and first-in-man trial[J]. Circ Heart Fail, 2022, 15(4):e008362.
[11]
Griffin JM, Borlaug BA, Komtebedde J, et al. Impact of interatrial shunts on invasive hemodynamics and exercise tolerance in patients with heart failure[J]. J Am Heart Assoc, 2020, 9(17):e016760.
[12]
Søndergaard L, Reddy V, Kaye D, et al. Transcatheter treatment of heart failure with preserved or mildly reduced ejection fraction using a novel interatrial implant to lower left atrial pressure[J]. Eur J Heart Fail, 2014, 16(7):796-801.
[13]
Hasenfuss G, Gustafsson F, Kaye D, et al. Rationale and design of the reduce elevated left atrial pressure in patients with heart failure (Reduce LAP-HF) Trial[J]. J Card Fail, 2015, 21(7):594-600.
[14]
Kaye DM, Hasenfuß G, Neuzil P, et al. One-year outcomes after transcatheter insertion of an interatrial shunt device for the management of heart failure with preserved ejection fraction[J]. Circ Heart Fail, 2016, 9(12):e003662.
[15]
Feldman T, Komtebedde J, Burkhoff D, et al. Transcatheter interatrial shunt device for the treatment of heart failure: rationale and design of the randomized trial to REDUCE Elevated Left Atrial Pressure in Heart Failure (REDUCE LAP-HF I)[J]. Circ Heart Fail, 2016, 9(7):e003025.
[16]
Shah SJ, Feldman T, Ricciardi MJ, et al. One-year safety and clinical outcomes of a transcatheter interatrial shunt device for the treatment of heart failure with preserved ejection fraction in the reduce elevated left atrial pressure in patients with heart failure (REDUCE LAP-HF I) trial: a randomized clinical trial[J]. JAMA Cardiol, 2018, 3(10):968-977.
[17]
Shah SJ, Borlaug BA, Chung ES, et al. Atrial shunt device for heart failure with preserved and mildly reduced ejection fraction (REDUCE LAP-HF II): a randomised, multicentre, blinded, sham-controlled trial[J]. Lancet, 2022, 399(10330):1130-1140.
[18]
Shah SJ. Innovative clinical trial designs for precision medicine in heart failure with preserved ejection fraction[J]. J Cardiovasc Transl Res, 2017, 10(3):322-336.
[19]
Borlaug BA, Blair J, Bergmann MW, et al. Latent pulmonary vascular disease may alter the response to therapeutic strial shunt device in heart failure[J]. Circulation, 2022, 145(21):1592-1604.
[20]
Salah HM, Levin AP, Fudim M. Device therapy for heart failure with preserved ejection fraction[J]. Cardiol Clin, 2022, 40(4):507-515.
[21]
Rodés-Cabau J, Bernier M, Amat-Santos IJ, et al. Interatrial shunting for heart failure: early and late results from the first-in-human experience with the V-Wave system[J]. JACC Cardiovasc Interv, 2018, 11(22):2300-2310.
[22]
Del Trigo M, Bergeron S, Bernier M, et al. Unidirectional left-to-right interatrial shunting for treatment of patients with heart failure with reduced ejection fraction: a safety and proof-of-principle cohort study[J]. Lancet, 2016, 387(10025):1290-1297.
[23]
Guimarães L, Bergeron S, Bernier M, et al. Interatrial shunt with the second-generation V-Wave system for patients with advanced chronic heart failure[J]. EuroIntervention, 2020, 15(16):1426-1428.
[24]
Emani S, Burkhoff D, Lilly SM. Interatrial shunt devices for the treatment of heart failure[J]. Trends Cardiovasc Med, 2021, 31(7):427-432.
[25]
Bakhshaliyev N, Çelikkale İ, Enhoş A, et al. Impact of atrial flow regulator (AFR) implantation on 12-month mortality in heart failure : Insights from a single site in the PRELIEVE study[J]. Herz, 2022, 47(4):366-373.
[26]
Hibbert B, Zahr F, Simard T, et al. Left atrial to coronary sinus shunting for treatment of symptomatic heart failure[J]. JACC Cardiovasc Interv, 2023, 16(11):1369-1380.
[27]
van de Bovenkamp AA, Wijkstra N, Oosterveer FPT, et al. The value of passive leg raise during right heart catheterization in diagnosing heart failure with preserved ejection fraction[J]. Circ Heart Fail, 2022, 15(4):321-330.
[1] 李颖, 潘绍卿, 丁明岩, 孙丹丹, 曲海波, 侯培培, 朱芳. 实时三维超声心动图对高度房室传导阻滞伴射血分数保留的心力衰竭患者左束支区域起搏后左心室功能及同步性的评价[J]. 中华医学超声杂志(电子版), 2023, 20(04): 430-436.
[2] 卢凯, 王香云. 急性心肌梗死后心力衰竭患者血清微小RNA-200a表达及临床意义[J]. 中华危重症医学杂志(电子版), 2023, 16(06): 488-491.
[3] 刘一凡, 高迪, 董佳, 朱凯媛, 潘新, 张风雷, 徐大春, 鄢春喜. 可溶性生长刺激表达基因2蛋白对急性心力衰竭住院患者的预后评估价值[J]. 中华危重症医学杂志(电子版), 2023, 16(01): 13-19.
[4] 郑珊珊, 郑哲, 黄洁, 廖中凯, 宋云虎, 房晓楠, 刘盛. 主动脉内球囊反搏作为心脏移植桥接治疗对晚期心力衰竭合并肺动脉高压患者的疗效[J]. 中华移植杂志(电子版), 2022, 16(05): 277-284.
[5] 孙雪峰. 肾素-血管紧张素-醛固酮系统抑制剂治疗伴有心力衰竭的慢性肾脏病[J]. 中华肾病研究电子杂志, 2022, 11(06): 301-306.
[6] 张洪, 王宏宇. 神经酰胺与心脏和血管疾病关系的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(11): 1202-1205.
[7] 王震, 杨晓月, 苏康康, 王朝阳, 李少杰, 陈淑霞, 谷剑. β受体阻滞剂对心力衰竭合并房颤患者预后影响的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(04): 479-482.
[8] 王志明, 黄岳青, 马庆华, 陈卫海, 孙勤, 殷人麟, 吴雁鸣, 叶福龙, 尤华, 黄敏. “专科-全科”一体化联合管理在老年非瓣膜性房颤合并心衰患者中的应用:一项倾向性评分匹配研究[J]. 中华临床医师杂志(电子版), 2022, 16(12): 1188-1193.
[9] 李明雪, 李子墨, 田建立. 血压与心力衰竭的关系:研究现状与挑战[J]. 中华临床医师杂志(电子版), 2022, 16(08): 805-809.
[10] 唐红燕, 丹海俊, 高志红, 张作阳, 翟书梅, 吴少玉, 张玉. 心脏彩色多普勒超声在冠心病慢性心力衰竭患者临床诊断中的应用[J]. 中华临床医师杂志(电子版), 2022, 16(07): 676-679.
[11] 宗蔚蔚, 徐冬梅, 张新月, 耿洁. 医护一体化管理模式对沙库巴曲缬沙坦治疗老年心力衰竭患者用药依从性及并发症的影响[J]. 中华临床医师杂志(电子版), 2022, 16(06): 588-592.
[12] 杨旭希, 郑吉洋, 陈秀梅, 陈淑玲, 杨峻青, 苏芝琪, 左咏臻, 广东省医师协会心力衰竭专业医师分会, 广东省护士协会介入护士分会. 慢性心力衰竭患者容量管理护理专家共识[J]. 中华介入放射学电子杂志, 2023, 11(03): 201-207.
[13] 张诚霖, 李学美, 巫惠心, 李晓燕. 心力衰竭患者容量管理护理质量评价指标体系的构建[J]. 中华心脏与心律电子杂志, 2023, 11(03): 173-178.
[14] 孔倩文, 刘姗, 曾彩虹, 曾庆春. 有氧运动和抗阻运动对心力衰竭患者心率变异性影响的观察性研究[J]. 中华心脏与心律电子杂志, 2023, 11(03): 160-164.
[15] 黎俊聪, 黄莹, 杨婵娟, 屠燕. 钠-葡萄糖共转运体2抑制剂治疗心力衰竭的研究进展[J]. 中华心脏与心律电子杂志, 2023, 11(01): 45-49.
阅读次数
全文


摘要